The real topological vertex at work

We develop the real vertex formalism for the computation of the topological string partition function with D-branes and O-planes at the fixed point locus of an anti-holomorphic involution acting non-trivially on the toric diagram of any local toric Calabi-Yau manifold. Our results cover in particula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Krefl, Daniel (VerfasserIn) , Pasquetti, Sara (VerfasserIn) , Walcher, Johannes (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 2009
In: Arxiv

Online-Zugang:Verlag, kostenfrei, Volltext: http://arxiv.org/abs/0909.1324
Volltext
Verfasserangaben:Daniel Krefl, Sara Pasquetti and Johannes Walcher

MARC

LEADER 00000caa a2200000 c 4500
001 1569780439
003 DE-627
005 20220814071831.0
007 cr uuu---uuuuu
008 180213s2009 xx |||||o 00| ||eng c
035 |a (DE-627)1569780439 
035 |a (DE-576)499780434 
035 |a (DE-599)BSZ499780434 
035 |a (OCoLC)1340987303 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Krefl, Daniel  |d 1980-  |e VerfasserIn  |0 (DE-588)138756317  |0 (DE-627)605702527  |0 (DE-576)308951158  |4 aut 
245 1 4 |a The real topological vertex at work  |c Daniel Krefl, Sara Pasquetti and Johannes Walcher 
264 1 |c 2009 
300 |a 58 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 25.02.2020 
520 |a We develop the real vertex formalism for the computation of the topological string partition function with D-branes and O-planes at the fixed point locus of an anti-holomorphic involution acting non-trivially on the toric diagram of any local toric Calabi-Yau manifold. Our results cover in particular the real vertex with non-trivial fixed leg. We give a careful derivation of the relevant ingredients using duality with Chern-Simons theory on orbifolds. We show that the real vertex can also be interpreted in terms of a statistical model of symmetric crystal melting. Using this latter connection, we also assess the constant map contribution in Calabi-Yau orientifold models. We find that there are no perturbative contributions beyond one-loop, but a non-trivial sum over non-perturbative sectors, which we compare with the non-perturbative contribution to the closed string expansion. 
650 4 |a High Energy Physics - Theory 
700 1 |a Pasquetti, Sara  |e VerfasserIn  |0 (DE-588)1152340379  |0 (DE-627)1013868234  |0 (DE-576)499827724  |4 aut 
700 1 |a Walcher, Johannes  |d 1973-  |e VerfasserIn  |0 (DE-588)1089078978  |0 (DE-627)85098114X  |0 (DE-576)459955098  |4 aut 
773 0 8 |i Enthalten in  |t Arxiv  |d Ithaca, NY : Cornell University, 1991  |g (2009) Artikel-Nummer 0909.1324, 58 Seiten  |h Online-Ressource  |w (DE-627)509006531  |w (DE-600)2225896-6  |w (DE-576)28130436X  |7 nnas  |a The real topological vertex at work 
773 1 8 |g year:2009  |g extent:58  |a The real topological vertex at work 
856 4 0 |u http://arxiv.org/abs/0909.1324  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20180213 
993 |a Article 
998 |g 1089078978  |a Walcher, Johannes  |m 1089078978:Walcher, Johannes  |p 3  |y j 
999 |a KXP-PPN1569780439  |e 2998936318 
BIB |a Y 
JSO |a {"name":{"displayForm":["Daniel Krefl, Sara Pasquetti and Johannes Walcher"]},"id":{"eki":["1569780439"]},"origin":[{"dateIssuedDisp":"2009","dateIssuedKey":"2009"}],"relHost":[{"origin":[{"publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]","dateIssuedDisp":"1991-","publisher":"Cornell University ; Arxiv.org","dateIssuedKey":"1991"}],"id":{"zdb":["2225896-6"],"eki":["509006531"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"Arxiv","title_sort":"Arxiv"}],"type":{"bibl":"edited-book","media":"Online-Ressource"},"disp":"The real topological vertex at workArxiv","note":["Gesehen am 28.05.2024"],"language":["eng"],"recId":"509006531","pubHistory":["1991 -"],"part":{"extent":"58","text":"(2009) Artikel-Nummer 0909.1324, 58 Seiten","year":"2009"},"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}]}],"physDesc":[{"extent":"58 S."}],"person":[{"display":"Krefl, Daniel","roleDisplay":"VerfasserIn","role":"aut","family":"Krefl","given":"Daniel"},{"display":"Pasquetti, Sara","roleDisplay":"VerfasserIn","role":"aut","family":"Pasquetti","given":"Sara"},{"display":"Walcher, Johannes","roleDisplay":"VerfasserIn","role":"aut","family":"Walcher","given":"Johannes"}],"title":[{"title":"The real topological vertex at work","title_sort":"real topological vertex at work"}],"recId":"1569780439","language":["eng"],"type":{"bibl":"chapter","media":"Online-Ressource"},"note":["Gesehen am 25.02.2020"]} 
SRT |a KREFLDANIEREALTOPOLO2009