Matrix factorizations and mirror symmetry: the cubic curve
We revisit open string mirror symmetry for the elliptic curve, using matrix factorizations for describing D -branes on the B -model side. We show how flat coordinates can be intrinsically defined in the Landau-Ginzburg model, and derive the A -model partition function counting disk instantons that s...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
6 November 2006
|
| In: |
Journal of high energy physics
Year: 2006, Issue: 11 |
| ISSN: | 1029-8479 |
| DOI: | 10.1088/1126-6708/2006/11/006 |
| Online Access: | Verlag, kostenfrei, Volltext: http://dx.doi.org/10.1088/1126-6708/2006/11/006 Verlag, kostenfrei, Volltext: http://stacks.iop.org/1126-6708/2006/i=11/a=006 |
| Author Notes: | Ilka Brunner, Manfred Herbst, Wolfgang Lerche, and Johannes Walcher |
| Summary: | We revisit open string mirror symmetry for the elliptic curve, using matrix factorizations for describing D -branes on the B -model side. We show how flat coordinates can be intrinsically defined in the Landau-Ginzburg model, and derive the A -model partition function counting disk instantons that stretch between three D -branes. In mathematical terms, this amounts to computing the simplest Fukaya product m 2 from the LG mirror theory. In physics terms, this gives a systematic method for determining non-perturbative Yukawa couplings for intersecting brane configurations. |
|---|---|
| Item Description: | Gesehen am 21.02.2020 |
| Physical Description: | Online Resource |
| ISSN: | 1029-8479 |
| DOI: | 10.1088/1126-6708/2006/11/006 |