Matrix factorizations and mirror symmetry: the cubic curve

We revisit open string mirror symmetry for the elliptic curve, using matrix factorizations for describing D -branes on the B -model side. We show how flat coordinates can be intrinsically defined in the Landau-Ginzburg model, and derive the A -model partition function counting disk instantons that s...

Full description

Saved in:
Bibliographic Details
Main Authors: Brunner, Ilka (Author) , Walcher, Johannes (Author)
Format: Article (Journal)
Language:English
Published: 6 November 2006
In: Journal of high energy physics
Year: 2006, Issue: 11
ISSN:1029-8479
DOI:10.1088/1126-6708/2006/11/006
Online Access:Verlag, kostenfrei, Volltext: http://dx.doi.org/10.1088/1126-6708/2006/11/006
Verlag, kostenfrei, Volltext: http://stacks.iop.org/1126-6708/2006/i=11/a=006
Get full text
Author Notes:Ilka Brunner, Manfred Herbst, Wolfgang Lerche, and Johannes Walcher
Description
Summary:We revisit open string mirror symmetry for the elliptic curve, using matrix factorizations for describing D -branes on the B -model side. We show how flat coordinates can be intrinsically defined in the Landau-Ginzburg model, and derive the A -model partition function counting disk instantons that stretch between three D -branes. In mathematical terms, this amounts to computing the simplest Fukaya product m 2 from the LG mirror theory. In physics terms, this gives a systematic method for determining non-perturbative Yukawa couplings for intersecting brane configurations.
Item Description:Gesehen am 21.02.2020
Physical Description:Online Resource
ISSN:1029-8479
DOI:10.1088/1126-6708/2006/11/006