Matrix factorizations and mirror symmetry: the cubic curve

We revisit open string mirror symmetry for the elliptic curve, using matrix factorizations for describing D-branes on the B-model side. We show how flat coordinates can be intrinsically defined in the Landau-Ginzburg model, and derive the A-model partition function counting disk instantons that stre...

Full description

Saved in:
Bibliographic Details
Main Authors: Brunner, Ilka (Author) , Walcher, Johannes (Author)
Format: Article (Journal) Chapter/Article
Language:English
Published: 2004
In: Arxiv

Online Access:Verlag, kostenfrei, Volltext: http://arxiv.org/abs/hep-th/0408243
Get full text
Author Notes:Ilka Brunner, Manfred Herbst, Wolfgang Lerche, Johannes Walcher
Description
Summary:We revisit open string mirror symmetry for the elliptic curve, using matrix factorizations for describing D-branes on the B-model side. We show how flat coordinates can be intrinsically defined in the Landau-Ginzburg model, and derive the A-model partition function counting disk instantons that stretch between three D-branes. In mathematical terms, this amounts to computing the simplest Fukaya product m_2 from the LG mirror theory. In physics terms, this gives a systematic method for determining non-perturbative Yukawa couplings for intersecting brane configurations.
Item Description:Gesehen am 21.02.2020
Physical Description:Online Resource