Discrete torsion in singular G2-manifolds and real LG

We investigate strings at singularities of G_2-holonomy manifolds which arise in Z_2 orbifolds of Calabi-Yau spaces times a circle. The singularities locally look like R^4/Z_2 fibered over a SLAG, and can globally be embedded in CICYs in weighted projective spaces. The local model depends on the cho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Roiban, Radu (VerfasserIn) , Römelsberger, Christian (VerfasserIn) , Walcher, Johannes (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 2003
In: Arxiv

Online-Zugang:Verlag, kostenfrei, Volltext: http://arxiv.org/abs/hep-th/0203272
Volltext
Verfasserangaben:Radu Roiban, Department of Physics, University of California Santa Barbara, CA 93106,USA; Christian Römelsberger, Department of Physics and CIT-USC Center for Theoretical Physics University of Southern Calfornia Los Angeles, CA 90089, USA; Johannes Walcher, Institute for Theoretical Physics University of California Santa Barbara, CA 93106, USA
Beschreibung
Zusammenfassung:We investigate strings at singularities of G_2-holonomy manifolds which arise in Z_2 orbifolds of Calabi-Yau spaces times a circle. The singularities locally look like R^4/Z_2 fibered over a SLAG, and can globally be embedded in CICYs in weighted projective spaces. The local model depends on the choice of a discrete torsion in the fibration, and the global model on an anti-holomorphic involution of the Calabi-Yau hypersurface. We determine how these choices are related to each other by computing a Wilson surface detecting discrete torsion. We then follow the same orbifolds to the non-geometric Landau-Ginzburg region of moduli space. We argue that the symmetry-breaking twisted sectors are effectively captured by real Landau-Ginzburg potentials. In particular, we find agreement in the low-energy spectra of strings computed from geometry and Gepner-model CFT. Along the way, we construct the full modular data of orbifolds of N=2 minimal models by the mirror automorphism, and give a real-LG interpretation of their modular invariants. Some of the models provide examples of the mirror-symmetry phenomenon for G_2 holonomy.
Beschreibung:Im Titel ist die Zahl 2 tiefgestellt
Gesehen am 15.02.2018
Beschreibung:Online Resource