Penalized quasi-likelihood estimation in partial linear models

Consider a partial linear model, where the expectation of a random variable Y depends on covariates (x,z)(x,z)(x, z) through F(θ0x+m0(z))F(θ0x+m0(z))F(\theta_0 x + m_0(z)), with θ0θ0\theta_0 an unknown parameter, and m0m0m_0 an unknown function. We apply the theory of empirical processes to derive t...

Full description

Saved in:
Bibliographic Details
Main Authors: Mammen, Enno (Author) , Geer, Sara van de (Author)
Format: Article (Journal)
Language:English
Published: 1997
In: The annals of statistics
Year: 1997, Volume: 25, Issue: 3, Pages: 1014-1035
ISSN:2168-8966
DOI:10.1214/aos/1069362736
Online Access:Verlag, Volltext: http://dx.doi.org/10.1214/aos/1069362736
Verlag, Volltext: https://projecteuclid.org/euclid.aos/1069362736
Verlag, Volltext: https://projecteuclid.org/download/pdf_1/euclid.aos/1069362736
Get full text
Author Notes:Enno Mammen, Sara van de Geer
Description
Summary:Consider a partial linear model, where the expectation of a random variable Y depends on covariates (x,z)(x,z)(x, z) through F(θ0x+m0(z))F(θ0x+m0(z))F(\theta_0 x + m_0(z)), with θ0θ0\theta_0 an unknown parameter, and m0m0m_0 an unknown function. We apply the theory of empirical processes to derive the asymptotic properties of the penalized quasi-likelihood estimator.
Item Description:First available in Project Euclid: 20 November 2003
Gesehen am 15.02.2018
Physical Description:Online Resource
ISSN:2168-8966
DOI:10.1214/aos/1069362736