Penalized quasi-likelihood estimation in partial linear models
Consider a partial linear model, where the expectation of a random variable Y depends on covariates (x,z)(x,z)(x, z) through F(θ0x+m0(z))F(θ0x+m0(z))F(\theta_0 x + m_0(z)), with θ0θ0\theta_0 an unknown parameter, and m0m0m_0 an unknown function. We apply the theory of empirical processes to derive t...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
1997
|
| In: |
The annals of statistics
Year: 1997, Volume: 25, Issue: 3, Pages: 1014-1035 |
| ISSN: | 2168-8966 |
| DOI: | 10.1214/aos/1069362736 |
| Online Access: | Verlag, Volltext: http://dx.doi.org/10.1214/aos/1069362736 Verlag, Volltext: https://projecteuclid.org/euclid.aos/1069362736 Verlag, Volltext: https://projecteuclid.org/download/pdf_1/euclid.aos/1069362736 |
| Author Notes: | Enno Mammen, Sara van de Geer |
| Summary: | Consider a partial linear model, where the expectation of a random variable Y depends on covariates (x,z)(x,z)(x, z) through F(θ0x+m0(z))F(θ0x+m0(z))F(\theta_0 x + m_0(z)), with θ0θ0\theta_0 an unknown parameter, and m0m0m_0 an unknown function. We apply the theory of empirical processes to derive the asymptotic properties of the penalized quasi-likelihood estimator. |
|---|---|
| Item Description: | First available in Project Euclid: 20 November 2003 Gesehen am 15.02.2018 |
| Physical Description: | Online Resource |
| ISSN: | 2168-8966 |
| DOI: | 10.1214/aos/1069362736 |