Finite p-groups of exponent pe all of whose cyclic subgroups of order pe are normal

Here we classify finite nonabelian p-groups G of exponent pe, e≥2, all of whose cyclic subgroups of order pe are normal in G. Let G0 be the subgroup of G generated by all elements of order pe. If p>2, then G0=G and G is of class 2 (Theorem 1). However if p=2, then |G:G0|≤2 and in case |G:G0|=2 th...

Full description

Saved in:
Bibliographic Details
Main Author: Janko, Zvonimir (Author)
Format: Article (Journal)
Language:English
Published: 15 July 2014
In: Journal of algebra
Year: 2014, Volume: 416, Pages: 274-286
ISSN:1090-266X
DOI:10.1016/j.jalgebra.2014.05.027
Online Access:Verlag, Volltext: http://dx.doi.org/10.1016/j.jalgebra.2014.05.027
Verlag, Volltext: http://www.sciencedirect.com/science/article/pii/S0021869314003068
Get full text
Author Notes:Zvonimir Janko
Description
Summary:Here we classify finite nonabelian p-groups G of exponent pe, e≥2, all of whose cyclic subgroups of order pe are normal in G. Let G0 be the subgroup of G generated by all elements of order pe. If p>2, then G0=G and G is of class 2 (Theorem 1). However if p=2, then |G:G0|≤2 and in case |G:G0|=2 the structure of G is more complicated (Theorems 3, 4 and 5).
Item Description:Im Titel erscheint bei der Zeichenfolge "pe" das e jeweils hochgestellt
Gesehen am 23.02.2018
Physical Description:Online Resource
ISSN:1090-266X
DOI:10.1016/j.jalgebra.2014.05.027