Higher order accuracy of the bootstrap method for smooth functionals

In this paper we consider bootstrap of a smooth functional T. We give a simple proof for the higher order accuracy of the bootstrap estimate. In particular, we show that the expectation of a smooth function of the studentised functional is estimated to order $O_{P}(n^{-1})$. Furthermore for symmetri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Mammen, Enno (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 1992
In: Scandinavian journal of statistics
Year: 1992, Jahrgang: 19, Heft: 3, Pages: 255-269
ISSN:1467-9469
Online-Zugang:Verlag, Volltext: http://www.jstor.org/stable/4616243?seq=1#page_scan_tab_contents
Verlag, Volltext: http://www.jstor.org/stable/4616243
Volltext
Verfasserangaben:E. Mammen
Beschreibung
Zusammenfassung:In this paper we consider bootstrap of a smooth functional T. We give a simple proof for the higher order accuracy of the bootstrap estimate. In particular, we show that the expectation of a smooth function of the studentised functional is estimated to order $O_{P}(n^{-1})$. Furthermore for symmetric functions the rate of convergence increases to $O_{P}(n^{-3/2})$. These results are in agreement with Hall (1986, 1988, 1992), where these rates of convergence have been shown for functionals which are implicit or explicit functions of vector means.
Beschreibung:Gesehen am 27.02.2018
Beschreibung:Online Resource
ISSN:1467-9469