Estimating a smooth monotone regression function

The problem of estimating a smooth monotone regression function mmm will be studied. We will consider the estimator mSImSIm_{SI} consisting of a smoothing step (application of a kernel estimator based on a kernel KKK) and of a isotonisation step (application of the pool adjacent violator algorithm)....

Full description

Saved in:
Bibliographic Details
Main Author: Mammen, Enno (Author)
Format: Article (Journal)
Language:English
Published: 1991
In: The annals of statistics
Year: 1991, Volume: 19, Issue: 2, Pages: 724-740
ISSN:2168-8966
DOI:10.1214/aos/1176348117
Online Access:Verlag, Volltext: http://dx.doi.org/10.1214/aos/1176348117
Verlag, Volltext: https://projecteuclid.org/euclid.aos/1176348117
Verlag, Volltext: https://projecteuclid.org/download/pdf_1/euclid.aos/1176348117
Get full text
Author Notes:Enno Mammen
Description
Summary:The problem of estimating a smooth monotone regression function mmm will be studied. We will consider the estimator mSImSIm_{SI} consisting of a smoothing step (application of a kernel estimator based on a kernel KKK) and of a isotonisation step (application of the pool adjacent violator algorithm). The estimator mSImSIm_{SI} will be compared with the estimator mISmISm_{IS} where these two steps are interchanged. A higher order stochastic expansion of these estimators will be given which show that mSImSIm_{SI} and mSImSIm_{SI} are asymptotically first order equivalent and that mISmISm_{IS} has a smaller mean squared error than mSImSIm_{SI} if and only if the kernel function of the kernel estimator is not too smooth.
Item Description:First available in Project Euclid: 12 April 2007
Gesehen am 27.02.2018
Physical Description:Online Resource
ISSN:2168-8966
DOI:10.1214/aos/1176348117