Estimating a smooth monotone regression function

The problem of estimating a smooth monotone regression function mmm will be studied. We will consider the estimator mSImSIm_{SI} consisting of a smoothing step (application of a kernel estimator based on a kernel KKK) and of a isotonisation step (application of the pool adjacent violator algorithm)....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Mammen, Enno (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 1991
In: The annals of statistics
Year: 1991, Jahrgang: 19, Heft: 2, Pages: 724-740
ISSN:2168-8966
DOI:10.1214/aos/1176348117
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1214/aos/1176348117
Verlag, Volltext: https://projecteuclid.org/euclid.aos/1176348117
Verlag, Volltext: https://projecteuclid.org/download/pdf_1/euclid.aos/1176348117
Volltext
Verfasserangaben:Enno Mammen
Beschreibung
Zusammenfassung:The problem of estimating a smooth monotone regression function mmm will be studied. We will consider the estimator mSImSIm_{SI} consisting of a smoothing step (application of a kernel estimator based on a kernel KKK) and of a isotonisation step (application of the pool adjacent violator algorithm). The estimator mSImSIm_{SI} will be compared with the estimator mISmISm_{IS} where these two steps are interchanged. A higher order stochastic expansion of these estimators will be given which show that mSImSIm_{SI} and mSImSIm_{SI} are asymptotically first order equivalent and that mISmISm_{IS} has a smaller mean squared error than mSImSIm_{SI} if and only if the kernel function of the kernel estimator is not too smooth.
Beschreibung:First available in Project Euclid: 12 April 2007
Gesehen am 27.02.2018
Beschreibung:Online Resource
ISSN:2168-8966
DOI:10.1214/aos/1176348117