The statistical information contained in additional observations

Let EnEn\mathscr{E}^n be a statistical experiment based on nnn i.i.d. observations. We compare EnEn\mathscr{E}^n with En+rnEn+rn\mathscr{E}^{n+r_n}. The gain of information due to the rnrnr_n additional observations is measured by the deficiency distance Δ(En,En+rn)Δ(En,En+rn)\Delta (\mathscr{E}^n,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Mammen, Enno (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 1986
In: The annals of statistics
Year: 1986, Jahrgang: 14, Heft: 2, Pages: 665-678
ISSN:2168-8966
DOI:10.1214/aos/1176349945
Online-Zugang:Volltext
Volltext
Volltext
Volltext
Verfasserangaben:Enno Mammen
Beschreibung
Zusammenfassung:Let EnEn\mathscr{E}^n be a statistical experiment based on nnn i.i.d. observations. We compare EnEn\mathscr{E}^n with En+rnEn+rn\mathscr{E}^{n+r_n}. The gain of information due to the rnrnr_n additional observations is measured by the deficiency distance Δ(En,En+rn)Δ(En,En+rn)\Delta (\mathscr{E}^n, \mathscr{E}^{n+r_n}), i.e., the maximum diminution of the risk functions. We show that under general dimensionality conditions Δ(En,En+rn)Δ(En,En+rn)\Delta(\mathscr{E}^n, \mathscr{E}^{n+r_n}) is of order rn/nrn/nr_n/n. Further the behavior of ΔΔ\Delta is studied and compared for asymptotically Gaussian experiments. We show that the information gain increases logarithmically. The Gaussian and the binomial family turn out to be--in some sense--opposite extreme cases, with the increase of information asymptotically minimal in the Gaussian case and maximal in the binomial.
Beschreibung:First available in Project Euclid: 12 April 2007
Gesehen am 01.03.2018
Beschreibung:Online Resource
ISSN:2168-8966
DOI:10.1214/aos/1176349945