Masses and couplings of vector mesonsfrom the pion electromagnetic, weak, and πγ transition form factors

We analyze the pion electromagnetic, charged-current, and πγπγ\pi\gamma transition form factors at timelike momentum transfers q, q2=s≤1.4q2=s≤1.4q^2 = s\le 1.4 GeV2, using a dispersion approach. We discuss in detail the propagator matrix of the photon-vector meson system and define certain reduced...

Full description

Saved in:
Bibliographic Details
Main Authors: Melikhov, Dmitri (Author) , Nachtmann, Otto (Author) , Paulus, Timo (Author)
Format: Article (Journal)
Language:English
Published: 23 March 2004
In: The European physical journal. C, Particles and fields
Year: 2004, Volume: 34, Issue: 3, Pages: 345-360
ISSN:1434-6052
DOI:10.1140/epjc/s2004-01726-4
Online Access:Verlag, kostenfrei, Volltext: http://dx.doi.org/10.1140/epjc/s2004-01726-4
Verlag, kostenfrei, Volltext: https://link.springer.com/article/10.1140/epjc/s2004-01726-4
Get full text
Author Notes:D. Melikhov, O. Nachtmann, V. Nikonov, T. Paulus
Description
Summary:We analyze the pion electromagnetic, charged-current, and πγπγ\pi\gamma transition form factors at timelike momentum transfers q, q2=s≤1.4q2=s≤1.4q^2 = s\le 1.4 GeV2, using a dispersion approach. We discuss in detail the propagator matrix of the photon-vector meson system and define certain reduced amplitudes, or vertex functions, describing the coupling of this system to final states. We then apply the derived analytic expressions to the analysis of the recent e+e−→π+π−e+e−→π+π−e^ + e^-\to \pi^ + \pi^-, τ−→π−π0νττ−→π−π0ντ\tau^-\to \pi^-\pi^0\nu_\tau, and e+e−→π0γe+e−→π0γe^ + e^-\to \pi^0\gamma data. We find the reduced amplitudes for the coupling of the photon and vector mesons to two pseudoscalars to be constant, independent of s, in the range considered, indicating a “freezing” of the amplitudes for s≤1s≤1s\le 1 GeV. The fit to the form factor data leads to the following values of the Breit-Wigner resonance masses mρ−=775.3±0.8mρ−=775.3±0.8m_{\rho^-} = 775.3\pm 0.8 MeV, mρ0=773.8±0.6mρ0=773.8±0.6m_{\rho^0} = 773.8\pm 0.6 MeV and mω=782.43±0.05mω=782.43±0.05m_\omega = 782.43\pm 0.05 MeV, where the errors are only statistical.
Item Description:Gesehen am 07.03.2018
Physical Description:Online Resource
ISSN:1434-6052
DOI:10.1140/epjc/s2004-01726-4