Parametric dictionary-based velocimetry for echo PIV

We introduce a novel motion estimation approach for Echo PIV for the laminar and steady flow model. We mathematically formalize the motion estimation problem as a parametrization of a dictionary of particle trajectories by the physical flow parameter. We iteratively refine this unknown parameter by...

Full description

Saved in:
Bibliographic Details
Main Authors: Bodnariuc, Ecaterina (Author) , Petra, Stefania (Author) , Schnörr, Christoph (Author)
Format: Chapter/Article Conference Paper
Language:English
Published: 27 August 2016
In: Pattern Recognition
Year: 2016, Pages: 332-343
DOI:10.1007/978-3-319-45886-1_27
Subjects:
Online Access:Verlag, Volltext: http://dx.doi.org/10.1007/978-3-319-45886-1_27
Verlag, Volltext: https://link.springer.com/chapter/10.1007/978-3-319-45886-1_27
Get full text
Author Notes:Ecaterina Bodnariuc, Stefania Petra, Christian Poelma, Christoph Schnörr
Description
Summary:We introduce a novel motion estimation approach for Echo PIV for the laminar and steady flow model. We mathematically formalize the motion estimation problem as a parametrization of a dictionary of particle trajectories by the physical flow parameter. We iteratively refine this unknown parameter by subsequent sparse approximations. We show smoothness of the adaptive flow dictionary that is a key for a provably convergent numerical scheme. We validate our approach on real data and show accurate velocity estimation when compared to the state-of-the-art cross-correlation method.
Item Description:Gesehen am 13.03.2018
Physical Description:Online Resource
ISBN:9783319458861
DOI:10.1007/978-3-319-45886-1_27