Discrete tomography by continuous multilabeling subject to projection constraints
We present a non-convex variational approach to non-binary discrete tomography which combines non-local projection constraints with a continuous convex relaxation of the multilabeling problem. Minimizing this non-convex energy is achieved by a fixed point iteration which amounts to solving a sequenc...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Kapitel/Artikel Konferenzschrift |
| Sprache: | Englisch |
| Veröffentlicht: |
27 August 2016
|
| In: |
Pattern Recognition
Year: 2016, Pages: 261-272 |
| DOI: | 10.1007/978-3-319-45886-1_21 |
| Schlagworte: | |
| Online-Zugang: | Verlag, Volltext: http://dx.doi.org/10.1007/978-3-319-45886-1_21 Verlag, Volltext: https://link.springer.com/chapter/10.1007/978-3-319-45886-1_21 |
| Verfasserangaben: | Matthias Zisler, Stefania Petra, Claudius Schnörr, Christoph Schnörr |
| Zusammenfassung: | We present a non-convex variational approach to non-binary discrete tomography which combines non-local projection constraints with a continuous convex relaxation of the multilabeling problem. Minimizing this non-convex energy is achieved by a fixed point iteration which amounts to solving a sequence of convex problems, with guaranteed convergence to a critical point. A competitive numerical evaluation using standard test-datasets demonstrates a significantly improved reconstruction quality for noisy measurements from a small number of projections. |
|---|---|
| Beschreibung: | Gesehen am 13.03.2018 |
| Beschreibung: | Online Resource |
| ISBN: | 9783319458861 |
| DOI: | 10.1007/978-3-319-45886-1_21 |