Discrete tomography by continuous multilabeling subject to projection constraints

We present a non-convex variational approach to non-binary discrete tomography which combines non-local projection constraints with a continuous convex relaxation of the multilabeling problem. Minimizing this non-convex energy is achieved by a fixed point iteration which amounts to solving a sequenc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zisler, Matthias (VerfasserIn) , Petra, Stefania (VerfasserIn) , Schnörr, Christoph (VerfasserIn)
Dokumenttyp: Kapitel/Artikel Konferenzschrift
Sprache:Englisch
Veröffentlicht: 27 August 2016
In: Pattern Recognition
Year: 2016, Pages: 261-272
DOI:10.1007/978-3-319-45886-1_21
Schlagworte:
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1007/978-3-319-45886-1_21
Verlag, Volltext: https://link.springer.com/chapter/10.1007/978-3-319-45886-1_21
Volltext
Verfasserangaben:Matthias Zisler, Stefania Petra, Claudius Schnörr, Christoph Schnörr
Beschreibung
Zusammenfassung:We present a non-convex variational approach to non-binary discrete tomography which combines non-local projection constraints with a continuous convex relaxation of the multilabeling problem. Minimizing this non-convex energy is achieved by a fixed point iteration which amounts to solving a sequence of convex problems, with guaranteed convergence to a critical point. A competitive numerical evaluation using standard test-datasets demonstrates a significantly improved reconstruction quality for noisy measurements from a small number of projections.
Beschreibung:Gesehen am 13.03.2018
Beschreibung:Online Resource
ISBN:9783319458861
DOI:10.1007/978-3-319-45886-1_21