Positive loops and L∞-contact systolic inequalities

We prove an inequality between the L∞-norm of the contact Hamiltonian of a positive loop of contactomorphims and the minimal Reeb period. This implies that there are no small positive loops on hypertight or Liouville fillable contact manifolds. Non-existence of small positive loops for overtwisted 3...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Albers, Peter (VerfasserIn) , Fuchs, Urs (VerfasserIn) , Merry, Will J. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 28 June 2017
In: Selecta mathematica
Year: 2017, Jahrgang: 23, Heft: 4, Pages: 2491-2521
ISSN:1420-9020
DOI:10.1007/s00029-017-0338-2
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1007/s00029-017-0338-2
Verlag, Volltext: https://link.springer.com/article/10.1007/s00029-017-0338-2
Volltext
Verfasserangaben:Peter Albers, Urs Fuchs, Will J. Merry
Beschreibung
Zusammenfassung:We prove an inequality between the L∞-norm of the contact Hamiltonian of a positive loop of contactomorphims and the minimal Reeb period. This implies that there are no small positive loops on hypertight or Liouville fillable contact manifolds. Non-existence of small positive loops for overtwisted 3-manifolds was proved by Casals et al. (J Symplectic Geom 14:1013-1031, 2016). As corollaries of the inequality we deduce various results. E.g. we prove that certain periodic Reeb flows are the unique minimisers of the L∞-norm. Moreover, we establish L∞-type contact systolic inequalities in the presence of a positive loop.
Beschreibung:Das Zeichen ∞ erscheint stets hochgestellt
Gesehen am 15.03.2018
Beschreibung:Online Resource
ISSN:1420-9020
DOI:10.1007/s00029-017-0338-2