Positive loops and L∞-contact systolic inequalities
We prove an inequality between the L∞-norm of the contact Hamiltonian of a positive loop of contactomorphims and the minimal Reeb period. This implies that there are no small positive loops on hypertight or Liouville fillable contact manifolds. Non-existence of small positive loops for overtwisted 3...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
28 June 2017
|
| In: |
Selecta mathematica
Year: 2017, Jahrgang: 23, Heft: 4, Pages: 2491-2521 |
| ISSN: | 1420-9020 |
| DOI: | 10.1007/s00029-017-0338-2 |
| Online-Zugang: | Verlag, Volltext: http://dx.doi.org/10.1007/s00029-017-0338-2 Verlag, Volltext: https://link.springer.com/article/10.1007/s00029-017-0338-2 |
| Verfasserangaben: | Peter Albers, Urs Fuchs, Will J. Merry |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1571085106 | ||
| 003 | DE-627 | ||
| 005 | 20220814093133.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 180315s2017 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1007/s00029-017-0338-2 |2 doi | |
| 035 | |a (DE-627)1571085106 | ||
| 035 | |a (DE-576)501085106 | ||
| 035 | |a (DE-599)BSZ501085106 | ||
| 035 | |a (OCoLC)1340994185 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Albers, Peter |d 1975- |e VerfasserIn |0 (DE-588)129903817 |0 (DE-627)483350362 |0 (DE-576)188953140 |4 aut | |
| 245 | 1 | 0 | |a Positive loops and L∞-contact systolic inequalities |c Peter Albers, Urs Fuchs, Will J. Merry |
| 246 | 3 | 3 | |a Positive loops and L [infinity] -contact systolic inequalities |
| 264 | 1 | |c 28 June 2017 | |
| 300 | |a 31 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Das Zeichen ∞ erscheint stets hochgestellt | ||
| 500 | |a Gesehen am 15.03.2018 | ||
| 520 | |a We prove an inequality between the L∞-norm of the contact Hamiltonian of a positive loop of contactomorphims and the minimal Reeb period. This implies that there are no small positive loops on hypertight or Liouville fillable contact manifolds. Non-existence of small positive loops for overtwisted 3-manifolds was proved by Casals et al. (J Symplectic Geom 14:1013-1031, 2016). As corollaries of the inequality we deduce various results. E.g. we prove that certain periodic Reeb flows are the unique minimisers of the L∞-norm. Moreover, we establish L∞-type contact systolic inequalities in the presence of a positive loop. | ||
| 700 | 1 | |a Fuchs, Urs |e VerfasserIn |0 (DE-588)1053920806 |0 (DE-627)790804921 |0 (DE-576)409794996 |4 aut | |
| 700 | 1 | |a Merry, Will J. |e VerfasserIn |0 (DE-588)1154540073 |0 (DE-627)1015922295 |0 (DE-576)501084657 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Selecta mathematica |d Basel [u.a.] : Birkhäuser, 1995 |g 23(2017), 4, Seite 2491-2521 |h Online-Ressource |w (DE-627)254638821 |w (DE-600)1462998-7 |w (DE-576)078589819 |x 1420-9020 |7 nnas |a Positive loops and L∞-contact systolic inequalities |
| 773 | 1 | 8 | |g volume:23 |g year:2017 |g number:4 |g pages:2491-2521 |g extent:31 |a Positive loops and L∞-contact systolic inequalities |
| 856 | 4 | 0 | |u http://dx.doi.org/10.1007/s00029-017-0338-2 |x Verlag |x Resolving-System |3 Volltext |
| 856 | 4 | 0 | |u https://link.springer.com/article/10.1007/s00029-017-0338-2 |x Verlag |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20180315 | ||
| 993 | |a Article | ||
| 994 | |a 2017 | ||
| 998 | |g 1053920806 |a Fuchs, Urs |m 1053920806:Fuchs, Urs |d 620000 |d 620400 |e 620000PF1053920806 |e 620400PF1053920806 |k 0/620000/ |k 1/620000/620400/ |p 2 | ||
| 998 | |g 129903817 |a Albers, Peter |m 129903817:Albers, Peter |d 110000 |d 110100 |d 110000 |d 110400 |e 110000PA129903817 |e 110100PA129903817 |e 110000PA129903817 |e 110400PA129903817 |k 0/110000/ |k 1/110000/110100/ |k 0/110000/ |k 1/110000/110400/ |p 1 |x j | ||
| 999 | |a KXP-PPN1571085106 |e 3003435760 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"relHost":[{"title":[{"title_sort":"Selecta mathematica","title":"Selecta mathematica","subtitle":"SM"}],"language":["eng"],"recId":"254638821","type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Positive loops and L∞-contact systolic inequalitiesSelecta mathematica","note":["Gesehen am 02.12.05"],"part":{"issue":"4","pages":"2491-2521","year":"2017","extent":"31","volume":"23","text":"23(2017), 4, Seite 2491-2521"},"titleAlt":[{"title":"SM"}],"pubHistory":["N.S. 1.1995 -"],"id":{"issn":["1420-9020"],"eki":["254638821"],"zdb":["1462998-7"]},"origin":[{"publisherPlace":"Basel [u.a.] ; Berlin","dateIssuedDisp":"1995-","publisher":"Birkhäuser","dateIssuedKey":"1995"}],"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"31 S."}],"name":{"displayForm":["Peter Albers, Urs Fuchs, Will J. Merry"]},"id":{"eki":["1571085106"],"doi":["10.1007/s00029-017-0338-2"]},"origin":[{"dateIssuedDisp":"28 June 2017","dateIssuedKey":"2017"}],"language":["eng"],"recId":"1571085106","type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Das Zeichen ∞ erscheint stets hochgestellt","Gesehen am 15.03.2018"],"titleAlt":[{"title":"Positive loops and L [infinity] -contact systolic inequalities"}],"person":[{"family":"Albers","given":"Peter","display":"Albers, Peter","roleDisplay":"VerfasserIn","role":"aut"},{"role":"aut","display":"Fuchs, Urs","roleDisplay":"VerfasserIn","given":"Urs","family":"Fuchs"},{"given":"Will J.","family":"Merry","role":"aut","display":"Merry, Will J.","roleDisplay":"VerfasserIn"}],"title":[{"title_sort":"Positive loops and L∞-contact systolic inequalities","title":"Positive loops and L∞-contact systolic inequalities"}]} | ||
| SRT | |a ALBERSPETEPOSITIVELO2820 | ||