Positive loops and L∞-contact systolic inequalities

We prove an inequality between the L∞-norm of the contact Hamiltonian of a positive loop of contactomorphims and the minimal Reeb period. This implies that there are no small positive loops on hypertight or Liouville fillable contact manifolds. Non-existence of small positive loops for overtwisted 3...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Albers, Peter (VerfasserIn) , Fuchs, Urs (VerfasserIn) , Merry, Will J. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 28 June 2017
In: Selecta mathematica
Year: 2017, Jahrgang: 23, Heft: 4, Pages: 2491-2521
ISSN:1420-9020
DOI:10.1007/s00029-017-0338-2
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1007/s00029-017-0338-2
Verlag, Volltext: https://link.springer.com/article/10.1007/s00029-017-0338-2
Volltext
Verfasserangaben:Peter Albers, Urs Fuchs, Will J. Merry

MARC

LEADER 00000caa a2200000 c 4500
001 1571085106
003 DE-627
005 20220814093133.0
007 cr uuu---uuuuu
008 180315s2017 xx |||||o 00| ||eng c
024 7 |a 10.1007/s00029-017-0338-2  |2 doi 
035 |a (DE-627)1571085106 
035 |a (DE-576)501085106 
035 |a (DE-599)BSZ501085106 
035 |a (OCoLC)1340994185 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Albers, Peter  |d 1975-  |e VerfasserIn  |0 (DE-588)129903817  |0 (DE-627)483350362  |0 (DE-576)188953140  |4 aut 
245 1 0 |a Positive loops and L∞-contact systolic inequalities  |c Peter Albers, Urs Fuchs, Will J. Merry 
246 3 3 |a Positive loops and L [infinity] -contact systolic inequalities 
264 1 |c 28 June 2017 
300 |a 31 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Das Zeichen ∞ erscheint stets hochgestellt 
500 |a Gesehen am 15.03.2018 
520 |a We prove an inequality between the L∞-norm of the contact Hamiltonian of a positive loop of contactomorphims and the minimal Reeb period. This implies that there are no small positive loops on hypertight or Liouville fillable contact manifolds. Non-existence of small positive loops for overtwisted 3-manifolds was proved by Casals et al. (J Symplectic Geom 14:1013-1031, 2016). As corollaries of the inequality we deduce various results. E.g. we prove that certain periodic Reeb flows are the unique minimisers of the L∞-norm. Moreover, we establish L∞-type contact systolic inequalities in the presence of a positive loop. 
700 1 |a Fuchs, Urs  |e VerfasserIn  |0 (DE-588)1053920806  |0 (DE-627)790804921  |0 (DE-576)409794996  |4 aut 
700 1 |a Merry, Will J.  |e VerfasserIn  |0 (DE-588)1154540073  |0 (DE-627)1015922295  |0 (DE-576)501084657  |4 aut 
773 0 8 |i Enthalten in  |t Selecta mathematica  |d Basel [u.a.] : Birkhäuser, 1995  |g 23(2017), 4, Seite 2491-2521  |h Online-Ressource  |w (DE-627)254638821  |w (DE-600)1462998-7  |w (DE-576)078589819  |x 1420-9020  |7 nnas  |a Positive loops and L∞-contact systolic inequalities 
773 1 8 |g volume:23  |g year:2017  |g number:4  |g pages:2491-2521  |g extent:31  |a Positive loops and L∞-contact systolic inequalities 
856 4 0 |u http://dx.doi.org/10.1007/s00029-017-0338-2  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u https://link.springer.com/article/10.1007/s00029-017-0338-2  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20180315 
993 |a Article 
994 |a 2017 
998 |g 1053920806  |a Fuchs, Urs  |m 1053920806:Fuchs, Urs  |d 620000  |d 620400  |e 620000PF1053920806  |e 620400PF1053920806  |k 0/620000/  |k 1/620000/620400/  |p 2 
998 |g 129903817  |a Albers, Peter  |m 129903817:Albers, Peter  |d 110000  |d 110100  |d 110000  |d 110400  |e 110000PA129903817  |e 110100PA129903817  |e 110000PA129903817  |e 110400PA129903817  |k 0/110000/  |k 1/110000/110100/  |k 0/110000/  |k 1/110000/110400/  |p 1  |x j 
999 |a KXP-PPN1571085106  |e 3003435760 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"title":[{"title_sort":"Selecta mathematica","title":"Selecta mathematica","subtitle":"SM"}],"language":["eng"],"recId":"254638821","type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Positive loops and L∞-contact systolic inequalitiesSelecta mathematica","note":["Gesehen am 02.12.05"],"part":{"issue":"4","pages":"2491-2521","year":"2017","extent":"31","volume":"23","text":"23(2017), 4, Seite 2491-2521"},"titleAlt":[{"title":"SM"}],"pubHistory":["N.S. 1.1995 -"],"id":{"issn":["1420-9020"],"eki":["254638821"],"zdb":["1462998-7"]},"origin":[{"publisherPlace":"Basel [u.a.] ; Berlin","dateIssuedDisp":"1995-","publisher":"Birkhäuser","dateIssuedKey":"1995"}],"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"31 S."}],"name":{"displayForm":["Peter Albers, Urs Fuchs, Will J. Merry"]},"id":{"eki":["1571085106"],"doi":["10.1007/s00029-017-0338-2"]},"origin":[{"dateIssuedDisp":"28 June 2017","dateIssuedKey":"2017"}],"language":["eng"],"recId":"1571085106","type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Das Zeichen ∞ erscheint stets hochgestellt","Gesehen am 15.03.2018"],"titleAlt":[{"title":"Positive loops and L [infinity] -contact systolic inequalities"}],"person":[{"family":"Albers","given":"Peter","display":"Albers, Peter","roleDisplay":"VerfasserIn","role":"aut"},{"role":"aut","display":"Fuchs, Urs","roleDisplay":"VerfasserIn","given":"Urs","family":"Fuchs"},{"given":"Will J.","family":"Merry","role":"aut","display":"Merry, Will J.","roleDisplay":"VerfasserIn"}],"title":[{"title_sort":"Positive loops and L∞-contact systolic inequalities","title":"Positive loops and L∞-contact systolic inequalities"}]} 
SRT |a ALBERSPETEPOSITIVELO2820