Mapping class group orbits of curves with self-intersections

We study mapping class group orbits of homotopy and isotopy classes of curves with self-intersections. We exhibit the asymptotics of the number of such orbits of curves with a bounded number of self-intersections, as the complexity of the surface tends to infinity.We also consider the minimal genus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cahn, Patricia (VerfasserIn) , Fanoni, Federica (VerfasserIn) , Petri, Bram (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: February 2018
In: Israel journal of mathematics
Year: 2018, Jahrgang: 223, Heft: 1, Pages: 53-74
ISSN:1565-8511
DOI:10.1007/s11856-017-1619-3
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1007/s11856-017-1619-3
Verlag, Volltext: https://link.springer.com/article/10.1007/s11856-017-1619-3
Volltext
Verfasserangaben:by Patricia Cahn and Federica Fanoni and Bram Petri

MARC

LEADER 00000caa a2200000 c 4500
001 1571147543
003 DE-627
005 20220814093921.0
007 cr uuu---uuuuu
008 180316s2018 xx |||||o 00| ||eng c
024 7 |a 10.1007/s11856-017-1619-3  |2 doi 
035 |a (DE-627)1571147543 
035 |a (DE-576)501147543 
035 |a (DE-599)BSZ501147543 
035 |a (OCoLC)1340994408 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Cahn, Patricia  |e VerfasserIn  |0 (DE-588)1154609995  |0 (DE-627)1016033672  |0 (DE-576)501147438  |4 aut 
245 1 0 |a Mapping class group orbits of curves with self-intersections  |c by Patricia Cahn and Federica Fanoni and Bram Petri 
264 1 |c February 2018 
300 |a 22 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a First online: 30 November 2017 
500 |a Gesehen am 16.03.2018 
520 |a We study mapping class group orbits of homotopy and isotopy classes of curves with self-intersections. We exhibit the asymptotics of the number of such orbits of curves with a bounded number of self-intersections, as the complexity of the surface tends to infinity.We also consider the minimal genus of a subsurface that contains the curve. We determine the asymptotic number of orbits of curves with a fixed minimal genus and a bounded self-intersection number, as the complexity of the surface tends to infinity.As a corollary of our methods, we obtain that most curves that are homotopic are also isotopic. Furthermore, using a theorem by Basmajian, we get a bound on the number of mapping class group orbits on a given hyperbolic surface that can contain short curves. For a fixed length, this bound is polynomial in the signature of the surface.The arguments we use are based on counting embeddings of ribbon graphs. 
700 1 |a Fanoni, Federica  |d 1986-  |e VerfasserIn  |0 (DE-588)1118634748  |0 (DE-627)872134458  |0 (DE-576)479550034  |4 aut 
700 1 |a Petri, Bram  |d 1987-  |e VerfasserIn  |0 (DE-588)1117839079  |0 (DE-627)871701804  |0 (DE-576)479359385  |4 aut 
773 0 8 |i Enthalten in  |t Israel journal of mathematics  |d Berlin : Springer, 1963  |g 223(2018), 1, Seite 53-74  |h Online-Ressource  |w (DE-627)32654528X  |w (DE-600)2042388-3  |w (DE-576)264949811  |x 1565-8511  |7 nnas  |a Mapping class group orbits of curves with self-intersections 
773 1 8 |g volume:223  |g year:2018  |g number:1  |g pages:53-74  |g extent:22  |a Mapping class group orbits of curves with self-intersections 
856 4 0 |u http://dx.doi.org/10.1007/s11856-017-1619-3  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u https://link.springer.com/article/10.1007/s11856-017-1619-3  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20180316 
993 |a Article 
994 |a 2018 
998 |g 1118634748  |a Fanoni, Federica  |m 1118634748:Fanoni, Federica  |d 110000  |d 110100  |d 110000  |d 110400  |e 110000PF1118634748  |e 110100PF1118634748  |e 110000PF1118634748  |e 110400PF1118634748  |k 0/110000/  |k 1/110000/110100/  |k 0/110000/  |k 1/110000/110400/  |p 2 
999 |a KXP-PPN1571147543  |e 3003570048 
BIB |a Y 
SER |a journal 
JSO |a {"origin":[{"dateIssuedDisp":"February 2018","dateIssuedKey":"2018"}],"id":{"eki":["1571147543"],"doi":["10.1007/s11856-017-1619-3"]},"name":{"displayForm":["by Patricia Cahn and Federica Fanoni and Bram Petri"]},"physDesc":[{"extent":"22 S."}],"relHost":[{"name":{"displayForm":["The Hebrew University"]},"id":{"issn":["1565-8511"],"zdb":["2042388-3"],"eki":["32654528X"]},"origin":[{"publisherPlace":"Berlin ; Heidelberg ; Jerusalem","dateIssuedKey":"1963","publisher":"Springer ; The Magnes Press","dateIssuedDisp":"1963-"}],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"Israel journal of mathematics","title_sort":"Israel journal of mathematics"}],"recId":"32654528X","language":["eng"],"corporate":[{"roleDisplay":"Herausgebendes Organ","display":"ha-Universịtah ha-ʿIvrit bi-Yerushalayim","role":"isb"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"Mapping class group orbits of curves with self-intersectionsIsrael journal of mathematics","note":["Gesehen am 03.01.08"],"part":{"volume":"223","text":"223(2018), 1, Seite 53-74","extent":"22","year":"2018","issue":"1","pages":"53-74"},"pubHistory":["1.1963 -"]}],"title":[{"title":"Mapping class group orbits of curves with self-intersections","title_sort":"Mapping class group orbits of curves with self-intersections"}],"person":[{"display":"Cahn, Patricia","roleDisplay":"VerfasserIn","role":"aut","family":"Cahn","given":"Patricia"},{"role":"aut","display":"Fanoni, Federica","roleDisplay":"VerfasserIn","given":"Federica","family":"Fanoni"},{"given":"Bram","family":"Petri","role":"aut","roleDisplay":"VerfasserIn","display":"Petri, Bram"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["First online: 30 November 2017","Gesehen am 16.03.2018"],"recId":"1571147543","language":["eng"]} 
SRT |a CAHNPATRICMAPPINGCLA2018