Non-affine Landau-Ginzburg models and intersection cohomology

We construct Landau-Ginzburg models for numerically effective complete intersections in toric manifolds as partial compactifications of families of Laurent polynomials. We show a mirror statement saying that the quantum D-module of the ambient part of the cohomology of the submanifold is isomorphic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Reichelt, Thomas (VerfasserIn) , Sevenheck, Christian (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2017
In: Annales scientifiques de l'Ecole Normale Supérieure
Year: 2017, Jahrgang: 4, Heft: 3, Pages: 665-753
ISSN:1873-2151
Online-Zugang:Verlag, Volltext: http://smf4.emath.fr/Publications/AnnalesENS/4_50/html/ens_ann-sc_50_665-753.php
Volltext
Verfasserangaben:Thomas Reichelt, Christian Sevenheck
Beschreibung
Zusammenfassung:We construct Landau-Ginzburg models for numerically effective complete intersections in toric manifolds as partial compactifications of families of Laurent polynomials. We show a mirror statement saying that the quantum D-module of the ambient part of the cohomology of the submanifold is isomorphic to an intersection cohomology D-module defined from this partial compactification and we deduce Hodge properties of these differential systems.
Beschreibung:Gesehen am 20.03.2018
Beschreibung:Online Resource
ISSN:1873-2151