Non-affine Landau-Ginzburg models and intersection cohomology
We construct Landau-Ginzburg models for numerically effective complete intersections in toric manifolds as partial compactifications of families of Laurent polynomials. We show a mirror statement saying that the quantum D-module of the ambient part of the cohomology of the submanifold is isomorphic...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
2017
|
| In: |
Annales scientifiques de l'Ecole Normale Supérieure
Year: 2017, Jahrgang: 4, Heft: 3, Pages: 665-753 |
| ISSN: | 1873-2151 |
| Online-Zugang: | Verlag, Volltext: http://smf4.emath.fr/Publications/AnnalesENS/4_50/html/ens_ann-sc_50_665-753.php |
| Verfasserangaben: | Thomas Reichelt, Christian Sevenheck |
| Zusammenfassung: | We construct Landau-Ginzburg models for numerically effective complete intersections in toric manifolds as partial compactifications of families of Laurent polynomials. We show a mirror statement saying that the quantum D-module of the ambient part of the cohomology of the submanifold is isomorphic to an intersection cohomology D-module defined from this partial compactification and we deduce Hodge properties of these differential systems. |
|---|---|
| Beschreibung: | Gesehen am 20.03.2018 |
| Beschreibung: | Online Resource |
| ISSN: | 1873-2151 |