Parahoric restriction for GSp(4)
Parahoric restriction is the parahoric analogue of Jacquet’s functor. The group GSp(4, F) of symplectic similitudes of genus two over a local number field F/ℚ p has five conjugacy classes of parahoric subgroups. For each we determine the parahoric restriction of the non-cuspidal irreducible smooth r...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
February 2018
|
| In: |
Algebras and representation theory
Year: 2018, Volume: 21, Issue: 1, Pages: 145-161$417 |
| ISSN: | 1572-9079 |
| DOI: | 10.1007/s10468-017-9707-y |
| Online Access: | Verlag, Volltext: http://dx.doi.org/10.1007/s10468-017-9707-y Verlag, Volltext: https://link.springer.com/article/10.1007/s10468-017-9707-y |
| Author Notes: | Mirko Rösner |
| Summary: | Parahoric restriction is the parahoric analogue of Jacquet’s functor. The group GSp(4, F) of symplectic similitudes of genus two over a local number field F/ℚ p has five conjugacy classes of parahoric subgroups. For each we determine the parahoric restriction of the non-cuspidal irreducible smooth representations of GSp(4, F) in terms of explicit character values. |
|---|---|
| Item Description: | Published online: 5 July 2017 Gesehen am 20.03.2018 |
| Physical Description: | Online Resource |
| ISSN: | 1572-9079 |
| DOI: | 10.1007/s10468-017-9707-y |