Parahoric restriction for GSp(4)

Parahoric restriction is the parahoric analogue of Jacquet’s functor. The group GSp(4, F) of symplectic similitudes of genus two over a local number field F/ℚ p has five conjugacy classes of parahoric subgroups. For each we determine the parahoric restriction of the non-cuspidal irreducible smooth r...

Full description

Saved in:
Bibliographic Details
Main Author: Rösner, Mirko (Author)
Format: Article (Journal)
Language:English
Published: February 2018
In: Algebras and representation theory
Year: 2018, Volume: 21, Issue: 1, Pages: 145-161$417
ISSN:1572-9079
DOI:10.1007/s10468-017-9707-y
Online Access:Verlag, Volltext: http://dx.doi.org/10.1007/s10468-017-9707-y
Verlag, Volltext: https://link.springer.com/article/10.1007/s10468-017-9707-y
Get full text
Author Notes:Mirko Rösner
Description
Summary:Parahoric restriction is the parahoric analogue of Jacquet’s functor. The group GSp(4, F) of symplectic similitudes of genus two over a local number field F/ℚ p has five conjugacy classes of parahoric subgroups. For each we determine the parahoric restriction of the non-cuspidal irreducible smooth representations of GSp(4, F) in terms of explicit character values.
Item Description:Published online: 5 July 2017
Gesehen am 20.03.2018
Physical Description:Online Resource
ISSN:1572-9079
DOI:10.1007/s10468-017-9707-y