A construction of Frobenius manifolds with logarithmic poles and applications

A construction theorem for Frobenius manifolds with logarithmic poles is established. This is a generalization of a theorem of Hertling and Manin. As an application we prove a partial generalization of the reconstruction theorem of Kontsevich and Manin for projective smooth varieties with convergent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Reichelt, Thomas (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: May 2009
In: Communications in mathematical physics
Year: 2009, Jahrgang: 287, Heft: 3, Pages: 1145-1187
ISSN:1432-0916
DOI:10.1007/s00220-008-0699-7
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1007/s00220-008-0699-7
Verlag, Volltext: https://link.springer.com/article/10.1007/s00220-008-0699-7
Volltext
Verfasserangaben:Thomas Reichelt
Beschreibung
Zusammenfassung:A construction theorem for Frobenius manifolds with logarithmic poles is established. This is a generalization of a theorem of Hertling and Manin. As an application we prove a partial generalization of the reconstruction theorem of Kontsevich and Manin for projective smooth varieties with convergent Gromov-Witten potential. A second application is a construction of Frobenius manifolds out of a variation of polarized Hodge structures which degenerates along a normal crossing divisor when certain generation conditions are fulfilled.
Beschreibung:Published online: 16 December 2008
Gesehen am 21.03.2018
Beschreibung:Online Resource
ISSN:1432-0916
DOI:10.1007/s00220-008-0699-7