Removal of singularities and Gromov compactness for symplectic vortices
We prove that the moduli space of gauge equivalence classes of symplectic vortices with uniformly bounded energy in a compact Hamiltonian manifold admits a Gromov compactification by polystable vortices.
Saved in:
| Main Author: | |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
2014
|
| In: |
The journal of symplectic geometry
Year: 2014, Volume: 12, Issue: 2, Pages: 257-311 |
| ISSN: | 1540-2347 |
| DOI: | 10.4310/JSG.2014.v12.n2.a3 |
| Online Access: | Verlag, Volltext: http://dx.doi.org/10.4310/JSG.2014.v12.n2.a3 |
| Author Notes: | Andreas Ott |
| Summary: | We prove that the moduli space of gauge equivalence classes of symplectic vortices with uniformly bounded energy in a compact Hamiltonian manifold admits a Gromov compactification by polystable vortices. |
|---|---|
| Item Description: | Gesehen am 21.03.2017 |
| Physical Description: | Online Resource |
| ISSN: | 1540-2347 |
| DOI: | 10.4310/JSG.2014.v12.n2.a3 |