Removal of singularities and Gromov compactness for symplectic vortices

We prove that the moduli space of gauge equivalence classes of symplectic vortices with uniformly bounded energy in a compact Hamiltonian manifold admits a Gromov compactification by polystable vortices.

Saved in:
Bibliographic Details
Main Author: Ott, Andreas (Author)
Format: Article (Journal)
Language:English
Published: 2014
In: The journal of symplectic geometry
Year: 2014, Volume: 12, Issue: 2, Pages: 257-311
ISSN:1540-2347
DOI:10.4310/JSG.2014.v12.n2.a3
Online Access:Verlag, Volltext: http://dx.doi.org/10.4310/JSG.2014.v12.n2.a3
Get full text
Author Notes:Andreas Ott
Description
Summary:We prove that the moduli space of gauge equivalence classes of symplectic vortices with uniformly bounded energy in a compact Hamiltonian manifold admits a Gromov compactification by polystable vortices.
Item Description:Gesehen am 21.03.2017
Physical Description:Online Resource
ISSN:1540-2347
DOI:10.4310/JSG.2014.v12.n2.a3