Explicit construction of Ramanujan bigraphs
We construct explicitly an infinite family of Ramanujan graphs which are bipartite and biregular. Our construction starts with the Bruhat-Tits building of an inner form of \mathrm{SU}_{3}(\mathbb{Q}_{p})SU3(Qp)\mathrm{SU}_{3}(\mathbb{Q}_{p}). To make the graphs finite, we take successive quotients b...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Chapter/Article Conference Paper |
| Language: | English |
| Published: |
2015
|
| In: |
Women in Numbers Europe
|
| DOI: | 10.1007/978-3-319-17987-2_1 |
| Subjects: | |
| Online Access: | Verlag, Volltext: http://dx.doi.org/10.1007/978-3-319-17987-2_1 Verlag, Volltext: https://link.springer.com/chapter/10.1007/978-3-319-17987-2_1 |
| Author Notes: | Cristina Ballantine, Brooke Feigon, Radhika Ganapathy, Janne Kool, Kathrin Maurischat, and Amy Wooding |
| Summary: | We construct explicitly an infinite family of Ramanujan graphs which are bipartite and biregular. Our construction starts with the Bruhat-Tits building of an inner form of \mathrm{SU}_{3}(\mathbb{Q}_{p})SU3(Qp)\mathrm{SU}_{3}(\mathbb{Q}_{p}). To make the graphs finite, we take successive quotients by infinitely many discrete co-compact subgroups of decreasing size. |
|---|---|
| Item Description: | Gesehen am 21.03.2018 |
| Physical Description: | Online Resource |
| ISBN: | 9783319179872 |
| DOI: | 10.1007/978-3-319-17987-2_1 |