Explicit construction of Ramanujan bigraphs

We construct explicitly an infinite family of Ramanujan graphs which are bipartite and biregular. Our construction starts with the Bruhat-Tits building of an inner form of \mathrm{SU}_{3}(\mathbb{Q}_{p})SU3(Qp)\mathrm{SU}_{3}(\mathbb{Q}_{p}). To make the graphs finite, we take successive quotients b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ballantine, Cristina (VerfasserIn) , Maurischat, Kathrin (VerfasserIn)
Dokumenttyp: Kapitel/Artikel Konferenzschrift
Sprache:Englisch
Veröffentlicht: 2015
In: Women in Numbers Europe

DOI:10.1007/978-3-319-17987-2_1
Schlagworte:
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1007/978-3-319-17987-2_1
Verlag, Volltext: https://link.springer.com/chapter/10.1007/978-3-319-17987-2_1
Volltext
Verfasserangaben:Cristina Ballantine, Brooke Feigon, Radhika Ganapathy, Janne Kool, Kathrin Maurischat, and Amy Wooding
Beschreibung
Zusammenfassung:We construct explicitly an infinite family of Ramanujan graphs which are bipartite and biregular. Our construction starts with the Bruhat-Tits building of an inner form of \mathrm{SU}_{3}(\mathbb{Q}_{p})SU3(Qp)\mathrm{SU}_{3}(\mathbb{Q}_{p}). To make the graphs finite, we take successive quotients by infinitely many discrete co-compact subgroups of decreasing size.
Beschreibung:Gesehen am 21.03.2018
Beschreibung:Online Resource
ISBN:9783319179872
DOI:10.1007/978-3-319-17987-2_1