Explicit construction of Ramanujan bigraphs
We construct explicitly an infinite family of Ramanujan graphs which are bipartite and biregular. Our construction starts with the Bruhat-Tits building of an inner form of \mathrm{SU}_{3}(\mathbb{Q}_{p})SU3(Qp)\mathrm{SU}_{3}(\mathbb{Q}_{p}). To make the graphs finite, we take successive quotients b...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Kapitel/Artikel Konferenzschrift |
| Sprache: | Englisch |
| Veröffentlicht: |
2015
|
| In: |
Women in Numbers Europe
|
| DOI: | 10.1007/978-3-319-17987-2_1 |
| Schlagworte: | |
| Online-Zugang: | Verlag, Volltext: http://dx.doi.org/10.1007/978-3-319-17987-2_1 Verlag, Volltext: https://link.springer.com/chapter/10.1007/978-3-319-17987-2_1 |
| Verfasserangaben: | Cristina Ballantine, Brooke Feigon, Radhika Ganapathy, Janne Kool, Kathrin Maurischat, and Amy Wooding |
| Zusammenfassung: | We construct explicitly an infinite family of Ramanujan graphs which are bipartite and biregular. Our construction starts with the Bruhat-Tits building of an inner form of \mathrm{SU}_{3}(\mathbb{Q}_{p})SU3(Qp)\mathrm{SU}_{3}(\mathbb{Q}_{p}). To make the graphs finite, we take successive quotients by infinitely many discrete co-compact subgroups of decreasing size. |
|---|---|
| Beschreibung: | Gesehen am 21.03.2018 |
| Beschreibung: | Online Resource |
| ISBN: | 9783319179872 |
| DOI: | 10.1007/978-3-319-17987-2_1 |