Probing new classes of π-acceptor ligands for rhodium catalyzed hydroformylation of styrene

Three hitherto unexplored classes of strong π-acceptor ligands for use in homogeneous catalysis—phospha-π-aromatic compounds (class A), pyrrolyl phosphines (class B) and phosphenium cations (class C)—have been evaluatated for rhodium catalyzed hydroformylation of styrene. When testing monodentate li...

Full description

Saved in:
Bibliographic Details
Main Author: Breit, Bernhard (Author)
Format: Article (Journal)
Language:English
Published: 24 May 1999
In: Journal of molecular catalysis. A, Chemical
Year: 1999, Volume: 143, Issue: 1/3, Pages: 143-154
DOI:10.1016/S1381-1169(98)00377-X
Online Access:Verlag, Pay-per-use, Volltext: http://dx.doi.org/10.1016/S1381-1169(98)00377-X
Verlag, Pay-per-use, Volltext: http://www.sciencedirect.com/science/article/pii/S138111699800377X
Get full text
Author Notes:Bernhard Breit
Description
Summary:Three hitherto unexplored classes of strong π-acceptor ligands for use in homogeneous catalysis—phospha-π-aromatic compounds (class A), pyrrolyl phosphines (class B) and phosphenium cations (class C)—have been evaluatated for rhodium catalyzed hydroformylation of styrene. When testing monodentate ligands, the ortho/ortho′-disubstituted phosphabenzene derivative 1b provided a rhodium-catalyst endowed with the highest catalytic activity. Based upon these results a first series of bidentate phosphabenzene ligands have been tailored employing the concept of an electronic differentiation of the two binding sites. An oxazoline/phosphabenzene system 8 which is capable of forming an eight-membered chelation ring gave the best results. Thus, a quantitative conversion of styrene at ambient temperature afforded the desired 2-phenylpropanal in high regioselectivity (25:1).
Item Description:Gesehen am 21.03.2018
Physical Description:Online Resource
DOI:10.1016/S1381-1169(98)00377-X