Simulating galaxy formation with the IllustrisTNG model

We introduce an updated physical model to simulate the formation and evolution of galaxies in cosmological, large-scale gravity+magnetohydrodynamical simulations with the moving mesh code AREPO. The overall framework builds upon the successes of the Illustris galaxy formation model, and includes pre...

Full description

Saved in:
Bibliographic Details
Main Authors: Pillepich, Annalisa (Author) , Springel, Volker (Author) , Pakmor, Rüdiger (Author) , Weinberger, Rainer (Author)
Format: Article (Journal) Chapter/Article
Language:English
Published: 2017
In: Arxiv

Online Access:Verlag, kostenfrei, Volltext: http://arxiv.org/abs/1703.02970
Get full text
Author Notes:Annalisa Pillepich, Volker Springel, Dylan Nelson, Shy Genel, Jill Naiman, Rüdiger Pakmor, Lars Hernquist, Paul Torrey, Mark Vogelsberger, Rainer Weinberger, and Federico Marinacci
Description
Summary:We introduce an updated physical model to simulate the formation and evolution of galaxies in cosmological, large-scale gravity+magnetohydrodynamical simulations with the moving mesh code AREPO. The overall framework builds upon the successes of the Illustris galaxy formation model, and includes prescriptions for star formation, stellar evolution, chemical enrichment, primordial and metal-line cooling of the gas, stellar feedback with galactic outflows, and black hole formation, growth and multi-mode feedback. In this paper we give a comprehensive description of the physical and numerical advances which form the core of the IllustrisTNG (The Next Generation) framework. We focus on the revised implementation of the galactic winds, of which we modify the directionality, velocity, thermal content, and energy scalings, and explore its effects on the galaxy population. As described in earlier works, the model also includes a new black hole driven kinetic feedback at low accretion rates, magnetohydrodynamics, and improvements to the numerical scheme. Using a suite of (25 Mpc
Item Description:Gesehen am 13.01.2021
Physical Description:Online Resource