Rigid G2-representations and motives of type G2
We consider a family of motives associated to the rigid local system whose monodromy is dense in the simple algebraic group of type G 2 and which has a local monodromy of order 7 at ∞ . We prove an explicit Hilbert irreduciblity theorem for the associated étale realizations and deduce that the spec...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
24 May 2016
|
| In: |
Israel journal of mathematics
Year: 2016, Jahrgang: 212, Heft: 1, Pages: 81-106 |
| ISSN: | 1565-8511 |
| DOI: | 10.1007/s11856-016-1295-8 |
| Online-Zugang: | Verlag, Volltext: http://dx.doi.org/10.1007/s11856-016-1295-8 Verlag, Volltext: https://link.springer.com/article/10.1007/s11856-016-1295-8 |
| Verfasserangaben: | by Michael Dettweiler and Johannes Schmidt |
| Zusammenfassung: | We consider a family of motives associated to the rigid local system whose monodromy is dense in the simple algebraic group of type G 2 and which has a local monodromy of order 7 at ∞ . We prove an explicit Hilbert irreduciblity theorem for the associated étale realizations and deduce that the specialized motives at the points of irreducibility have motivic Galois group G 2. |
|---|---|
| Beschreibung: | Gesehen am 06.04.2018 |
| Beschreibung: | Online Resource |
| ISSN: | 1565-8511 |
| DOI: | 10.1007/s11856-016-1295-8 |