Rigid G2-representations and motives of type G2

We consider a family of motives associated to the rigid local system whose monodromy is dense in the simple algebraic group of type G 2 and which has a local monodromy of order 7 at ∞ . We prove an explicit Hilbert irreduciblity theorem for the associated étale realizations and deduce that the spec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dettweiler, Michael (VerfasserIn) , Schmidt, Johannes (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 24 May 2016
In: Israel journal of mathematics
Year: 2016, Jahrgang: 212, Heft: 1, Pages: 81-106
ISSN:1565-8511
DOI:10.1007/s11856-016-1295-8
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1007/s11856-016-1295-8
Verlag, Volltext: https://link.springer.com/article/10.1007/s11856-016-1295-8
Volltext
Verfasserangaben:by Michael Dettweiler and Johannes Schmidt
Beschreibung
Zusammenfassung:We consider a family of motives associated to the rigid local system whose monodromy is dense in the simple algebraic group of type G 2 and which has a local monodromy of order 7 at ∞ . We prove an explicit Hilbert irreduciblity theorem for the associated étale realizations and deduce that the specialized motives at the points of irreducibility have motivic Galois group G 2.
Beschreibung:Gesehen am 06.04.2018
Beschreibung:Online Resource
ISSN:1565-8511
DOI:10.1007/s11856-016-1295-8