Standard special generic maps of homotopy spheres into Euclidean spaces

A so-called special generic map is by definition a map between smooth manifolds all of whose singularities are definite fold points. It is in general an open problem posed by Saeki in 1993 to determine the set of integers p for which a given homotopy sphere admits a special generic map into Rp. By m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Wrazidlo, Dominik (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: February 2018
In: Topology and its applications
Year: 2018, Jahrgang: 234, Pages: 348-358
DOI:10.1016/j.topol.2017.11.037
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1016/j.topol.2017.11.037
Verlag, Volltext: http://www.sciencedirect.com/science/article/pii/S0166864117306302
Volltext
Verfasserangaben:Dominik J. Wrazidlo
Beschreibung
Zusammenfassung:A so-called special generic map is by definition a map between smooth manifolds all of whose singularities are definite fold points. It is in general an open problem posed by Saeki in 1993 to determine the set of integers p for which a given homotopy sphere admits a special generic map into Rp. By means of the technique of Stein factorization we introduce and study certain special generic maps of homotopy spheres into Euclidean spaces called standard. Modifying a construction due to Weiss, we show that standard special generic maps give naturally rise to a filtration of the group of homotopy spheres by subgroups that is strongly related to the Gromoll filtration. Finally, we apply our result to some concrete homotopy spheres, which in particular answers Saeki's problem for the Milnor 7-sphere.
Beschreibung:Available online 1 December 2017
Gesehen am 16.04.2018
Beschreibung:Online Resource
DOI:10.1016/j.topol.2017.11.037