Tight homomorphisms and Hermitian symmetric spaces

We introduce the notion of tight homomorphism into a locally compact group with nonvanishing bounded cohomology and study these homomorphisms in detail when the target is a Lie group of Hermitian type. Tight homomorphisms between Lie groups of Hermitian type give rise to tight totally geodesic maps...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Burger, Marc (VerfasserIn) , Iozzi, Alessandra (VerfasserIn) , Wienhard, Anna (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 23 October 2009
In: Geometric and functional analysis
Year: 2009, Jahrgang: 19, Heft: 3, Pages: 678-721
ISSN:1420-8970
DOI:10.1007/s00039-009-0020-8
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1007/s00039-009-0020-8
Verlag, Volltext: https://link.springer.com/article/10.1007/s00039-009-0020-8
Volltext
Verfasserangaben:Marc Burger, Alessandra Iozzi and Anna Wienhard
Beschreibung
Zusammenfassung:We introduce the notion of tight homomorphism into a locally compact group with nonvanishing bounded cohomology and study these homomorphisms in detail when the target is a Lie group of Hermitian type. Tight homomorphisms between Lie groups of Hermitian type give rise to tight totally geodesic maps of Hermitian symmetric spaces. We show that tight maps behave in a functorial way with respect to the Shilov boundary and use this to prove a general structure theorem for tight homomorphisms. Furthermore, we classify all tight embeddings of the Poincaré disk.
Beschreibung:Gesehen am 18.04.2018
Beschreibung:Online Resource
ISSN:1420-8970
DOI:10.1007/s00039-009-0020-8