Cubic threefolds, Fano surfaces and the monodromy of the Gauss map

The Tannakian formalism allows to attach to any subvariety of an abelian variety an algebraic group in a natural way. The arising groups are closely related to moduli questions such as the Schottky problem, but in general they are still poorly understood. In this note we show that for the theta divi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Krämer, Thomas (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: March 2016
In: Manuscripta mathematica
Year: 2016, Jahrgang: 149, Heft: 3/4, Pages: 303-314
ISSN:1432-1785
DOI:10.1007/s00229-015-0785-z
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1007/s00229-015-0785-z
Verlag, Volltext: https://link.springer.com/article/10.1007/s00229-015-0785-z
Volltext
Verfasserangaben:Thomas Krämer
Beschreibung
Zusammenfassung:The Tannakian formalism allows to attach to any subvariety of an abelian variety an algebraic group in a natural way. The arising groups are closely related to moduli questions such as the Schottky problem, but in general they are still poorly understood. In this note we show that for the theta divisor on the intermediate Jacobian of a cubic threefold, the Tannaka group is exceptional of type E 6. This is the first known exceptional case, and it suggests a surprising connection with the monodromy of the Gauss map.
Beschreibung:First online: 01 October 2015
Gesehen am 19.04.2018
Beschreibung:Online Resource
ISSN:1432-1785
DOI:10.1007/s00229-015-0785-z