Characteristic classes and Hilbert-Poincaré series for perverse sheaves on abelian varieties

The convolution powers of a perverse sheaf on an abelian variety define an interesting family of branched local systems whose geometry is still poorly understood. We show that the generating series for their generic rank is a rational function of a very simple shape and that a similar result holds f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Krämer, Thomas (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 02 February 2016
In: Selecta mathematica
Year: 2016, Jahrgang: 22, Heft: 3, Pages: 1337-1356
ISSN:1420-9020
DOI:10.1007/s00029-015-0222-x
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1007/s00029-015-0222-x
Verlag, Volltext: https://link.springer.com/article/10.1007/s00029-015-0222-x
Volltext
Verfasserangaben:Thomas Krämer
Beschreibung
Zusammenfassung:The convolution powers of a perverse sheaf on an abelian variety define an interesting family of branched local systems whose geometry is still poorly understood. We show that the generating series for their generic rank is a rational function of a very simple shape and that a similar result holds for the symmetric convolution powers. We also give formulae for other Schur functors in terms of characteristic classes on the dual abelian variety, and as an example we discuss the case of Prym-Tjurin varieties.
Beschreibung:Gesehen am 19.04.2018
Beschreibung:Online Resource
ISSN:1420-9020
DOI:10.1007/s00029-015-0222-x