Determining H0 with Bayesian hyper-parameters

We re-analyse recent Cepheid data to estimate the Hubble parameter H 0 by using Bayesian hyper-parameters (HPs). We consider the two data sets from Riess et al. 2011 and 2016 (labelled R11 and R16, with R11 containing less than half the data of R16) and include the available anchor distances (megama...

Full description

Saved in:
Bibliographic Details
Main Authors: Cardona, Wilmar (Author) , Kunz, Martin (Author) , Pettorino, Valeria (Author)
Format: Article (Journal)
Language:English
Published: 29 March 2017
In: Journal of cosmology and astroparticle physics
Year: 2017, Issue: 3, Pages: ?
ISSN:1475-7516
DOI:10.1088/1475-7516/2017/03/056
Online Access:Verlag, Volltext: http://dx.doi.org/10.1088/1475-7516/2017/03/056
Verlag, Volltext: http://stacks.iop.org/1475-7516/2017/i=03/a=056
Get full text
Author Notes:Wilmar Cardona, Martin Kunz, and Valeria Pettorino
Description
Summary:We re-analyse recent Cepheid data to estimate the Hubble parameter H 0 by using Bayesian hyper-parameters (HPs). We consider the two data sets from Riess et al. 2011 and 2016 (labelled R11 and R16, with R11 containing less than half the data of R16) and include the available anchor distances (megamaser system NGC4258, detached eclipsing binary distances to LMC and M31, and MW Cepheids with parallaxes), use a weak metallicity prior and no period cut for Cepheids. We find that part of the R11 data is down-weighted by the HPs but that R16 is mostly consistent with expectations for a Gaussian distribution, meaning that there is no need to down-weight the R16 data set. For R16, we find a value of H 0 = 73.75 ± 2.11 km s −1 Mpc −1 if we use HPs for all data points (including Cepheid stars, supernovae type Ia, and the available anchor distances), which is about 2.6 σ larger than the Planck 2015 value of H 0 = 67.81 ± 0.92 km s −1 Mpc −1 and about 3.1 σ larger than the updated Planck 2016 value 66.93 ± 0.62 km s −1 Mpc −1 . If we perfom a standard χ 2 analysis as in R16, we find H 0 = 73.46 ± 1.40 (stat) km s −1 Mpc −1 . We test the effect of different assumptions, and find that the choice of anchor distances affects the final value significantly. If we exclude the Milky Way from the anchors, then the value of H 0 decreases. We find however no evident reason to exclude the MW data. The HP method used here avoids subjective rejection criteria for outliers and offers a way to test datasets for unknown systematics.
Item Description:Im Titel ist 0 tief gestellt
Gesehen am 23.04.2018
Physical Description:Online Resource
ISSN:1475-7516
DOI:10.1088/1475-7516/2017/03/056