Second-order recursive filtering on the rigid-motion Lie group SE3 based on nonlinear observations

Camera motion estimation from observed scene features is an important task in image processing to increase the accuracy of many methods, e.g., optical flow and structure-from-motion. Due to the curved geometry of the state space SE3SE3{\text {SE}}_{3} and the nonlinear relation to the observed optic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Berger, Johannes Peter (VerfasserIn) , Lenzen, Frank (VerfasserIn) , Becker, Florian (VerfasserIn) , Neufeld, Andreas (VerfasserIn) , Schnörr, Christoph (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 21 December 2016
In: Journal of mathematical imaging and vision
Year: 2017, Jahrgang: 58, Heft: 1, Pages: 102-129
ISSN:1573-7683
DOI:10.1007/s10851-016-0693-1
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1007/s10851-016-0693-1
Verlag, Volltext: https://link.springer.com/article/10.1007/s10851-016-0693-1
Volltext
Verfasserangaben:Johannes Berger, Frank Lenzen, Florian Becker, Andreas Neufeld, Christoph Schnörr

MARC

LEADER 00000caa a2200000 c 4500
001 1572395400
003 DE-627
005 20220814124006.0
007 cr uuu---uuuuu
008 180426s2016 xx |||||o 00| ||eng c
024 7 |a 10.1007/s10851-016-0693-1  |2 doi 
035 |a (DE-627)1572395400 
035 |a (DE-576)502395400 
035 |a (DE-599)BSZ502395400 
035 |a (OCoLC)1341007832 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Berger, Johannes Peter  |e VerfasserIn  |0 (DE-588)1125390239  |0 (DE-627)879919736  |0 (DE-576)483387363  |4 aut 
245 1 0 |a Second-order recursive filtering on the rigid-motion Lie group SE3 based on nonlinear observations  |c Johannes Berger, Frank Lenzen, Florian Becker, Andreas Neufeld, Christoph Schnörr 
264 1 |c 21 December 2016 
300 |a 28 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 26.04.2018 
520 |a Camera motion estimation from observed scene features is an important task in image processing to increase the accuracy of many methods, e.g., optical flow and structure-from-motion. Due to the curved geometry of the state space SE3SE3{\text {SE}}_{3} and the nonlinear relation to the observed optical flow, many recent filtering approaches use a first-order approximation and assume a Gaussian a posteriori distribution or restrict the state to Euclidean geometry. The physical model is usually also limited to uniform motions. We propose a second-order optimal minimum energy filter that copes with the full geometry of SE3SE3{\text {SE}}_{3} as well as with the nonlinear dependencies between the state space and observations., which results in a recursive description of the optimal state and the corresponding second-order operator. The derived filter enables reconstructing motions correctly for synthetic and real scenes, e.g., from the KITTI benchmark. Our experiments confirm that the derived minimum energy filter with higher-order state differential equation copes with higher-order kinematics and is also able to minimize model noise. We also show that the proposed filter is superior to state-of-the-art extended Kalman filters on Lie groups in the case of linear observations and that our method reaches the accuracy of modern visual odometry methods. 
700 1 |a Lenzen, Frank  |e VerfasserIn  |0 (DE-588)1065910673  |0 (DE-627)816929254  |0 (DE-576)425580652  |4 aut 
700 1 |a Becker, Florian  |e VerfasserIn  |0 (DE-588)129776742  |0 (DE-627)612223027  |0 (DE-576)31239568X  |4 aut 
700 1 |a Neufeld, Andreas  |e VerfasserIn  |0 (DE-588)1147872031  |0 (DE-627)1007277629  |0 (DE-576)496084011  |4 aut 
700 1 |a Schnörr, Christoph  |e VerfasserIn  |0 (DE-588)1023033348  |0 (DE-627)717351017  |0 (DE-576)168404540  |4 aut 
773 0 8 |i Enthalten in  |t Journal of mathematical imaging and vision  |d Dordrecht [u.a.] : Springer Science + Business Media B.V, 1992  |g 58(2017), 1, Seite 102-129  |h Online-Ressource  |w (DE-627)271179465  |w (DE-600)1479363-5  |w (DE-576)110512847  |x 1573-7683  |7 nnas  |a Second-order recursive filtering on the rigid-motion Lie group SE3 based on nonlinear observations 
773 1 8 |g volume:58  |g year:2017  |g number:1  |g pages:102-129  |g extent:28  |a Second-order recursive filtering on the rigid-motion Lie group SE3 based on nonlinear observations 
856 4 0 |u http://dx.doi.org/10.1007/s10851-016-0693-1  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u https://link.springer.com/article/10.1007/s10851-016-0693-1  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20180426 
993 |a Article 
994 |a 2017 
998 |g 1023033348  |a Schnörr, Christoph  |m 1023033348:Schnörr, Christoph  |d 110000  |d 110200  |d 110000  |d 110400  |d 700000  |d 708000  |e 110000PS1023033348  |e 110200PS1023033348  |e 110000PS1023033348  |e 110400PS1023033348  |e 700000PS1023033348  |e 708000PS1023033348  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |k 0/700000/  |k 1/700000/708000/  |p 5  |y j 
998 |g 1147872031  |a Neufeld, Andreas  |m 1147872031:Neufeld, Andreas  |d 110000  |d 110200  |d 110000  |d 110400  |e 110000PN1147872031  |e 110200PN1147872031  |e 110000PN1147872031  |e 110400PN1147872031  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |p 4 
998 |g 129776742  |a Becker, Florian  |m 129776742:Becker, Florian  |d 700000  |d 708000  |d 700000  |d 708070  |e 700000PB129776742  |e 708000PB129776742  |e 700000PB129776742  |e 708070PB129776742  |k 0/700000/  |k 1/700000/708000/  |k 0/700000/  |k 1/700000/708070/  |p 3 
998 |g 1065910673  |a Lenzen, Frank  |m 1065910673:Lenzen, Frank  |d 700000  |d 708000  |d 700000  |d 708070  |e 700000PL1065910673  |e 708000PL1065910673  |e 700000PL1065910673  |e 708070PL1065910673  |k 0/700000/  |k 1/700000/708000/  |k 0/700000/  |k 1/700000/708070/  |p 2 
998 |g 1125390239  |a Berger, Johannes Peter  |m 1125390239:Berger, Johannes Peter  |d 700000  |d 708000  |e 700000PB1125390239  |e 708000PB1125390239  |k 0/700000/  |k 1/700000/708000/  |p 1  |x j 
999 |a KXP-PPN1572395400  |e 3007179521 
BIB |a Y 
SER |a journal 
JSO |a {"physDesc":[{"extent":"28 S."}],"name":{"displayForm":["Johannes Berger, Frank Lenzen, Florian Becker, Andreas Neufeld, Christoph Schnörr"]},"recId":"1572395400","id":{"eki":["1572395400"],"doi":["10.1007/s10851-016-0693-1"]},"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"pubHistory":["1.1992 -"],"recId":"271179465","id":{"eki":["271179465"],"issn":["1573-7683"],"zdb":["1479363-5"]},"disp":"Second-order recursive filtering on the rigid-motion Lie group SE3 based on nonlinear observationsJournal of mathematical imaging and vision","title":[{"title":"Journal of mathematical imaging and vision","title_sort":"Journal of mathematical imaging and vision"}],"note":["Gesehen am 01.11.05"],"origin":[{"publisher":"Springer Science + Business Media B.V ; Kluwer","dateIssuedKey":"1992","dateIssuedDisp":"1992-","publisherPlace":"Dordrecht [u.a.] ; Dordrecht [u.a.]"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"part":{"extent":"28","volume":"58","year":"2017","pages":"102-129","text":"58(2017), 1, Seite 102-129","issue":"1"},"language":["eng"]}],"person":[{"given":"Johannes Peter","role":"aut","family":"Berger","display":"Berger, Johannes Peter"},{"family":"Lenzen","display":"Lenzen, Frank","given":"Frank","role":"aut"},{"family":"Becker","display":"Becker, Florian","given":"Florian","role":"aut"},{"family":"Neufeld","display":"Neufeld, Andreas","given":"Andreas","role":"aut"},{"role":"aut","given":"Christoph","family":"Schnörr","display":"Schnörr, Christoph"}],"origin":[{"dateIssuedDisp":"21 December 2016","dateIssuedKey":"2016"}],"note":["Gesehen am 26.04.2018"],"title":[{"title_sort":"Second-order recursive filtering on the rigid-motion Lie group SE3 based on nonlinear observations","title":"Second-order recursive filtering on the rigid-motion Lie group SE3 based on nonlinear observations"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"]} 
SRT |a BERGERJOHASECONDORDE2120