The inverse mean curvature flow in warped cylinders of non-positive radial curvature

We consider the inverse mean curvature flow in smooth Riemannian manifolds of the form ([R0,∞)×Sn,g¯) with metric g¯=dr2+ϑ2(r)σ and non-positive radial sectional curvature. We prove, that for initial mean-convex graphs over Sn the flow exists for all times and remains a graph over Sn. Under weak fur...

Full description

Saved in:
Bibliographic Details
Main Author: Scheuer, Julian (Author)
Format: Article (Journal)
Language:English
Published: 15 November 2016
In: Advances in mathematics
Year: 2017, Volume: 306, Pages: 1130-1163
ISSN:1090-2082
DOI:10.1016/j.aim.2016.11.003
Online Access:Verlag, Volltext: http://dx.doi.org/10.1016/j.aim.2016.11.003
Verlag, Volltext: http://www.sciencedirect.com/science/article/pii/S0001870816315110
Get full text
Author Notes:Julian Scheuer
Description
Summary:We consider the inverse mean curvature flow in smooth Riemannian manifolds of the form ([R0,∞)×Sn,g¯) with metric g¯=dr2+ϑ2(r)σ and non-positive radial sectional curvature. We prove, that for initial mean-convex graphs over Sn the flow exists for all times and remains a graph over Sn. Under weak further assumptions on the ambient manifold, we prove optimal decay of the gradient and that the flow leaves become umbilic exponentially fast. We prove optimal C2-estimates in case that the ambient pinching improves.
Item Description:Gesehen am 03.05.2018
Physical Description:Online Resource
ISSN:1090-2082
DOI:10.1016/j.aim.2016.11.003