The inverse mean curvature flow in warped cylinders of non-positive radial curvature
We consider the inverse mean curvature flow in smooth Riemannian manifolds of the form ([R0,∞)×Sn,g¯) with metric g¯=dr2+ϑ2(r)σ and non-positive radial sectional curvature. We prove, that for initial mean-convex graphs over Sn the flow exists for all times and remains a graph over Sn. Under weak fur...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
15 November 2016
|
| In: |
Advances in mathematics
Year: 2017, Jahrgang: 306, Pages: 1130-1163 |
| ISSN: | 1090-2082 |
| DOI: | 10.1016/j.aim.2016.11.003 |
| Online-Zugang: | Verlag, Volltext: http://dx.doi.org/10.1016/j.aim.2016.11.003 Verlag, Volltext: http://www.sciencedirect.com/science/article/pii/S0001870816315110 |
| Verfasserangaben: | Julian Scheuer |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1572571063 | ||
| 003 | DE-627 | ||
| 005 | 20220814130739.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 180503s2017 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1016/j.aim.2016.11.003 |2 doi | |
| 035 | |a (DE-627)1572571063 | ||
| 035 | |a (DE-576)502571063 | ||
| 035 | |a (DE-599)BSZ502571063 | ||
| 035 | |a (OCoLC)1341007817 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Scheuer, Julian |e VerfasserIn |0 (DE-588)1032005033 |0 (DE-627)737808357 |0 (DE-576)319283194 |4 aut | |
| 245 | 1 | 4 | |a The inverse mean curvature flow in warped cylinders of non-positive radial curvature |c Julian Scheuer |
| 264 | 1 | |c 15 November 2016 | |
| 300 | |a 34 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 03.05.2018 | ||
| 520 | |a We consider the inverse mean curvature flow in smooth Riemannian manifolds of the form ([R0,∞)×Sn,g¯) with metric g¯=dr2+ϑ2(r)σ and non-positive radial sectional curvature. We prove, that for initial mean-convex graphs over Sn the flow exists for all times and remains a graph over Sn. Under weak further assumptions on the ambient manifold, we prove optimal decay of the gradient and that the flow leaves become umbilic exponentially fast. We prove optimal C2-estimates in case that the ambient pinching improves. | ||
| 650 | 4 | |a Curvature flow | |
| 650 | 4 | |a Inverse mean curvature flow | |
| 650 | 4 | |a Warped products | |
| 773 | 0 | 8 | |i Enthalten in |t Advances in mathematics |d Amsterdam [u.a.] : Elsevier, 1961 |g 306(2017), Seite 1130-1163 |h Online-Ressource |w (DE-627)268759200 |w (DE-600)1472893-X |w (DE-576)103373292 |x 1090-2082 |7 nnas |a The inverse mean curvature flow in warped cylinders of non-positive radial curvature |
| 773 | 1 | 8 | |g volume:306 |g year:2017 |g pages:1130-1163 |g extent:34 |a The inverse mean curvature flow in warped cylinders of non-positive radial curvature |
| 856 | 4 | 0 | |u http://dx.doi.org/10.1016/j.aim.2016.11.003 |x Verlag |x Resolving-System |3 Volltext |
| 856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S0001870816315110 |x Verlag |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20180503 | ||
| 993 | |a Article | ||
| 994 | |a 2017 | ||
| 998 | |g 1032005033 |a Scheuer, Julian |m 1032005033:Scheuer, Julian |p 1 |x j |y j | ||
| 999 | |a KXP-PPN1572571063 |e 3007812461 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"person":[{"given":"Julian","family":"Scheuer","role":"aut","roleDisplay":"VerfasserIn","display":"Scheuer, Julian"}],"title":[{"title":"The inverse mean curvature flow in warped cylinders of non-positive radial curvature","title_sort":"inverse mean curvature flow in warped cylinders of non-positive radial curvature"}],"note":["Gesehen am 03.05.2018"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"recId":"1572571063","name":{"displayForm":["Julian Scheuer"]},"origin":[{"dateIssuedKey":"2017","dateIssuedDisp":"15 November 2016"}],"id":{"doi":["10.1016/j.aim.2016.11.003"],"eki":["1572571063"]},"physDesc":[{"extent":"34 S."}],"relHost":[{"origin":[{"publisherPlace":"Amsterdam [u.a.] ; New York, NY [u.a.] ; Orlando, Fla. ; Brugge ; San Diego, Calif. [u.a.]","dateIssuedDisp":"1961-","dateIssuedKey":"1961","publisher":"Elsevier ; Academic Press ; Academic Press ; Academic Press ; Acad. Press"}],"id":{"issn":["1090-2082"],"zdb":["1472893-X"],"eki":["268759200"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"Advances in mathematics","title":"Advances in mathematics"}],"pubHistory":["1.1961/65(1965) - 231.2012; Vol. 232.2013 -"],"part":{"year":"2017","pages":"1130-1163","volume":"306","text":"306(2017), Seite 1130-1163","extent":"34"},"note":["Gesehen am 14.09.2020"],"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"The inverse mean curvature flow in warped cylinders of non-positive radial curvatureAdvances in mathematics","recId":"268759200","language":["eng"]}]} | ||
| SRT | |a SCHEUERJULINVERSEMEA1520 | ||