The inverse mean curvature flow in warped cylinders of non-positive radial curvature

We consider the inverse mean curvature flow in smooth Riemannian manifolds of the form ([R0,∞)×Sn,g¯) with metric g¯=dr2+ϑ2(r)σ and non-positive radial sectional curvature. We prove, that for initial mean-convex graphs over Sn the flow exists for all times and remains a graph over Sn. Under weak fur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Scheuer, Julian (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 15 November 2016
In: Advances in mathematics
Year: 2017, Jahrgang: 306, Pages: 1130-1163
ISSN:1090-2082
DOI:10.1016/j.aim.2016.11.003
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1016/j.aim.2016.11.003
Verlag, Volltext: http://www.sciencedirect.com/science/article/pii/S0001870816315110
Volltext
Verfasserangaben:Julian Scheuer

MARC

LEADER 00000caa a2200000 c 4500
001 1572571063
003 DE-627
005 20220814130739.0
007 cr uuu---uuuuu
008 180503s2017 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.aim.2016.11.003  |2 doi 
035 |a (DE-627)1572571063 
035 |a (DE-576)502571063 
035 |a (DE-599)BSZ502571063 
035 |a (OCoLC)1341007817 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Scheuer, Julian  |e VerfasserIn  |0 (DE-588)1032005033  |0 (DE-627)737808357  |0 (DE-576)319283194  |4 aut 
245 1 4 |a The inverse mean curvature flow in warped cylinders of non-positive radial curvature  |c Julian Scheuer 
264 1 |c 15 November 2016 
300 |a 34 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 03.05.2018 
520 |a We consider the inverse mean curvature flow in smooth Riemannian manifolds of the form ([R0,∞)×Sn,g¯) with metric g¯=dr2+ϑ2(r)σ and non-positive radial sectional curvature. We prove, that for initial mean-convex graphs over Sn the flow exists for all times and remains a graph over Sn. Under weak further assumptions on the ambient manifold, we prove optimal decay of the gradient and that the flow leaves become umbilic exponentially fast. We prove optimal C2-estimates in case that the ambient pinching improves. 
650 4 |a Curvature flow 
650 4 |a Inverse mean curvature flow 
650 4 |a Warped products 
773 0 8 |i Enthalten in  |t Advances in mathematics  |d Amsterdam [u.a.] : Elsevier, 1961  |g 306(2017), Seite 1130-1163  |h Online-Ressource  |w (DE-627)268759200  |w (DE-600)1472893-X  |w (DE-576)103373292  |x 1090-2082  |7 nnas  |a The inverse mean curvature flow in warped cylinders of non-positive radial curvature 
773 1 8 |g volume:306  |g year:2017  |g pages:1130-1163  |g extent:34  |a The inverse mean curvature flow in warped cylinders of non-positive radial curvature 
856 4 0 |u http://dx.doi.org/10.1016/j.aim.2016.11.003  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u http://www.sciencedirect.com/science/article/pii/S0001870816315110  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20180503 
993 |a Article 
994 |a 2017 
998 |g 1032005033  |a Scheuer, Julian  |m 1032005033:Scheuer, Julian  |p 1  |x j  |y j 
999 |a KXP-PPN1572571063  |e 3007812461 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"given":"Julian","family":"Scheuer","role":"aut","roleDisplay":"VerfasserIn","display":"Scheuer, Julian"}],"title":[{"title":"The inverse mean curvature flow in warped cylinders of non-positive radial curvature","title_sort":"inverse mean curvature flow in warped cylinders of non-positive radial curvature"}],"note":["Gesehen am 03.05.2018"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"recId":"1572571063","name":{"displayForm":["Julian Scheuer"]},"origin":[{"dateIssuedKey":"2017","dateIssuedDisp":"15 November 2016"}],"id":{"doi":["10.1016/j.aim.2016.11.003"],"eki":["1572571063"]},"physDesc":[{"extent":"34 S."}],"relHost":[{"origin":[{"publisherPlace":"Amsterdam [u.a.] ; New York, NY [u.a.] ; Orlando, Fla. ; Brugge ; San Diego, Calif. [u.a.]","dateIssuedDisp":"1961-","dateIssuedKey":"1961","publisher":"Elsevier ; Academic Press ; Academic Press ; Academic Press ; Acad. Press"}],"id":{"issn":["1090-2082"],"zdb":["1472893-X"],"eki":["268759200"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"Advances in mathematics","title":"Advances in mathematics"}],"pubHistory":["1.1961/65(1965) - 231.2012; Vol. 232.2013 -"],"part":{"year":"2017","pages":"1130-1163","volume":"306","text":"306(2017), Seite 1130-1163","extent":"34"},"note":["Gesehen am 14.09.2020"],"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"The inverse mean curvature flow in warped cylinders of non-positive radial curvatureAdvances in mathematics","recId":"268759200","language":["eng"]}]} 
SRT |a SCHEUERJULINVERSEMEA1520