Some consequences of Wiesend’s higher dimensional class field theory
We use a result of G. Wiesend to establish the relation between the integral singular homology in degree zero and the abelianized tame fundamental group of a regular, connected scheme of finite type over Spec(Z).
Saved in:
| Main Author: | |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
6 January 2007
|
| In: |
Mathematische Zeitschrift
Year: 2007, Volume: 256, Issue: 4, Pages: 731-736 |
| ISSN: | 1432-1823 |
| DOI: | 10.1007/s00209-006-0094-z |
| Online Access: | Verlag, Volltext: http://dx.doi.org/10.1007/s00209-006-0094-z Verlag, Volltext: https://link.springer.com/article/10.1007/s00209-006-0094-z |
| Author Notes: | Alexander Schmidt |
| Summary: | We use a result of G. Wiesend to establish the relation between the integral singular homology in degree zero and the abelianized tame fundamental group of a regular, connected scheme of finite type over Spec(Z). |
|---|---|
| Item Description: | Der Artikel bezieht sich inhaltlich auf "Class field theory for arithmetic schemes" von G. Wiesend, im gleichen Heft erschienen Gesehen am 04.05.2018 |
| Physical Description: | Online Resource |
| ISSN: | 1432-1823 |
| DOI: | 10.1007/s00209-006-0094-z |