Some consequences of Wiesend’s higher dimensional class field theory

We use a result of G. Wiesend to establish the relation between the integral singular homology in degree zero and the abelianized tame fundamental group of a regular, connected scheme of finite type over Spec(Z).

Saved in:
Bibliographic Details
Main Author: Schmidt, Alexander (Author)
Format: Article (Journal)
Language:English
Published: 6 January 2007
In: Mathematische Zeitschrift
Year: 2007, Volume: 256, Issue: 4, Pages: 731-736
ISSN:1432-1823
DOI:10.1007/s00209-006-0094-z
Online Access:Verlag, Volltext: http://dx.doi.org/10.1007/s00209-006-0094-z
Verlag, Volltext: https://link.springer.com/article/10.1007/s00209-006-0094-z
Get full text
Author Notes:Alexander Schmidt
Description
Summary:We use a result of G. Wiesend to establish the relation between the integral singular homology in degree zero and the abelianized tame fundamental group of a regular, connected scheme of finite type over Spec(Z).
Item Description:Der Artikel bezieht sich inhaltlich auf "Class field theory for arithmetic schemes" von G. Wiesend, im gleichen Heft erschienen
Gesehen am 04.05.2018
Physical Description:Online Resource
ISSN:1432-1823
DOI:10.1007/s00209-006-0094-z