Some consequences of Wiesend’s higher dimensional class field theory
We use a result of G. Wiesend to establish the relation between the integral singular homology in degree zero and the abelianized tame fundamental group of a regular, connected scheme of finite type over Spec(Z).
Saved in:
| Main Author: | |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
6 January 2007
|
| In: |
Mathematische Zeitschrift
Year: 2007, Volume: 256, Issue: 4, Pages: 731-736 |
| ISSN: | 1432-1823 |
| DOI: | 10.1007/s00209-006-0094-z |
| Online Access: | Verlag, Volltext: http://dx.doi.org/10.1007/s00209-006-0094-z Verlag, Volltext: https://link.springer.com/article/10.1007/s00209-006-0094-z |
| Author Notes: | Alexander Schmidt |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1572652292 | ||
| 003 | DE-627 | ||
| 005 | 20220814132225.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 180504s2007 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1007/s00209-006-0094-z |2 doi | |
| 035 | |a (DE-627)1572652292 | ||
| 035 | |a (DE-576)502652292 | ||
| 035 | |a (DE-599)BSZ502652292 | ||
| 035 | |a (OCoLC)1341008373 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Schmidt, Alexander |d 1965- |e VerfasserIn |0 (DE-588)132996952 |0 (DE-627)530080079 |0 (DE-576)299553752 |4 aut | |
| 245 | 1 | 0 | |a Some consequences of Wiesend’s higher dimensional class field theory |c Alexander Schmidt |
| 264 | 1 | |c 6 January 2007 | |
| 300 | |a 6 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Der Artikel bezieht sich inhaltlich auf "Class field theory for arithmetic schemes" von G. Wiesend, im gleichen Heft erschienen | ||
| 500 | |a Gesehen am 04.05.2018 | ||
| 520 | |a We use a result of G. Wiesend to establish the relation between the integral singular homology in degree zero and the abelianized tame fundamental group of a regular, connected scheme of finite type over Spec(Z). | ||
| 773 | 0 | 8 | |i Enthalten in |t Mathematische Zeitschrift |d Berlin : Springer, 1918 |g 256(2007), 4, Seite 731-736 |h Online-Ressource |w (DE-627)254630812 |w (DE-600)1462134-4 |w (DE-576)074529722 |x 1432-1823 |7 nnas |a Some consequences of Wiesend’s higher dimensional class field theory |
| 773 | 1 | 8 | |g volume:256 |g year:2007 |g number:4 |g pages:731-736 |g extent:6 |a Some consequences of Wiesend’s higher dimensional class field theory |
| 856 | 4 | 0 | |u http://dx.doi.org/10.1007/s00209-006-0094-z |x Verlag |x Resolving-System |3 Volltext |
| 856 | 4 | 0 | |u https://link.springer.com/article/10.1007/s00209-006-0094-z |x Verlag |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20180504 | ||
| 993 | |a Article | ||
| 994 | |a 2007 | ||
| 998 | |g 132996952 |a Schmidt, Alexander |m 132996952:Schmidt, Alexander |p 1 |x j |y j | ||
| 999 | |a KXP-PPN1572652292 |e 3007949602 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"id":{"doi":["10.1007/s00209-006-0094-z"],"eki":["1572652292"]},"origin":[{"dateIssuedDisp":"6 January 2007","dateIssuedKey":"2007"}],"name":{"displayForm":["Alexander Schmidt"]},"relHost":[{"pubHistory":["1.1918 -"],"part":{"year":"2007","issue":"4","pages":"731-736","text":"256(2007), 4, Seite 731-736","volume":"256","extent":"6"},"note":["Gesehen am 02.12.05"],"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"Some consequences of Wiesend’s higher dimensional class field theoryMathematische Zeitschrift","recId":"254630812","language":["eng"],"title":[{"title_sort":"Mathematische Zeitschrift","title":"Mathematische Zeitschrift"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"Berlin ; Heidelberg","dateIssuedDisp":"1918-","publisher":"Springer","dateIssuedKey":"1918"}],"id":{"issn":["1432-1823"],"eki":["254630812"],"zdb":["1462134-4"]}}],"physDesc":[{"extent":"6 S."}],"title":[{"title":"Some consequences of Wiesend’s higher dimensional class field theory","title_sort":"Some consequences of Wiesend’s higher dimensional class field theory"}],"person":[{"role":"aut","display":"Schmidt, Alexander","roleDisplay":"VerfasserIn","given":"Alexander","family":"Schmidt"}],"recId":"1572652292","language":["eng"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Der Artikel bezieht sich inhaltlich auf \"Class field theory for arithmetic schemes\" von G. Wiesend, im gleichen Heft erschienen","Gesehen am 04.05.2018"]} | ||
| SRT | |a SCHMIDTALESOMECONSEQ6200 | ||