Graphical modeling for multivariate Hawkes processes with nonparametric link functions

Hawkes introduced a powerful multivariate point process model of mutually exciting processes to explain causal structure in data. In this article, it is shown that the Granger causality structure of such processes is fully encoded in the corresponding link functions of the model. A new nonparametric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Eichler, Michael (VerfasserIn) , Dahlhaus, Rainer (VerfasserIn) , Dueck, Johannes (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: Mar 2017
In: Journal of time series analysis
Year: 2017, Jahrgang: 38, Heft: 2, Pages: 225-242
ISSN:1467-9892
DOI:10.1111/jtsa.12213
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1111/jtsa.12213
Volltext
Verfasserangaben:Michael Eichler, Rainer Dahlhaus and Johannes Dueck
Beschreibung
Zusammenfassung:Hawkes introduced a powerful multivariate point process model of mutually exciting processes to explain causal structure in data. In this article, it is shown that the Granger causality structure of such processes is fully encoded in the corresponding link functions of the model. A new nonparametric estimator of the link functions based on a time-discretized version of the point process is introduced by using an infinite order autoregression. Consistency of the new estimator is derived. The estimator is applied to simulated data and to neural spike train data from the spinal dorsal horn of a rat.
Beschreibung:Published online 13 September 2016
Gesehen am 08.05.2018
Beschreibung:Online Resource
ISSN:1467-9892
DOI:10.1111/jtsa.12213