Overcoming species boundaries in peptide identification with Bayesian information criterion-driven error-tolerant peptide search (BICEPS)

Currently, the reliable identification of peptides and proteins is only feasible when thoroughly annotated sequence databases are available. Although sequencing capacities continue to grow, many organisms remain without reliable, fully annotated reference genomes required for proteomic analyses. Sta...

Full description

Saved in:
Bibliographic Details
Main Authors: Renard, Bernhard Y. (Author) , Xu, Buote (Author) , Hamprecht, Fred (Author)
Format: Article (Journal)
Language:English
Published: 6 April 2012
In: Molecular & cellular proteomics
Year: 2012, Volume: 11, Issue: 7
ISSN:1535-9484
DOI:10.1074/mcp.M111.014167
Online Access:Verlag, kostenfrei, Volltext: http://dx.doi.org/10.1074/mcp.M111.014167
Verlag, kostenfrei, Volltext: https://www.sciencedirect.com/science/article/pii/S1535947620330103?via%3Dihub
Get full text
Author Notes:Bernhard Y. Renard, Buote Xu, Marc Kirchner, Franziska Zickmann, Dominic Winter, Simone Korten, Norbert W. Brattig, Amit Tzur, Fred A. Hamprecht, and Hanno Steen
Description
Summary:Currently, the reliable identification of peptides and proteins is only feasible when thoroughly annotated sequence databases are available. Although sequencing capacities continue to grow, many organisms remain without reliable, fully annotated reference genomes required for proteomic analyses. Standard database search algorithms fail to identify peptides that are not exactly contained in a protein database. De novo searches are generally hindered by their restricted reliability, and current error-tolerant search strategies are limited by global, heuristic tradeoffs between database and spectral information. We propose a Bayesian information criterion-driven error-tolerant peptide search (BICEPS) and offer an open source implementation based on this statistical criterion to automatically balance the information of each single spectrum and the database, while limiting the run time. We show that BICEPS performs as well as current database search algorithms when such algorithms are applied to sequenced organisms, whereas BICEPS only uses a remotely related organism database. For instance, we use a chicken instead of a human database corresponding to an evolutionary distance of more than 300 million years (International Chicken Genome Sequencing Consortium (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432, 695-716). We demonstrate the successful application to cross-species proteomics with a 33% increase in the number of identified proteins for a filarial nematode sample of Litomosoides sigmodontis.
Item Description:Gesehen am 17.05.2018
Physical Description:Online Resource
ISSN:1535-9484
DOI:10.1074/mcp.M111.014167