Remarks on Segal algebras

Let B be an abstract Segal algebra in some Banach algebra A. There was some belief that in the commutative case A should be semi-simple, if B is, but this is not so (Section I). It is well known that a (proper) abstract Segal algebra does not have bounded right approximate units. It may however have...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Leinert, Michael (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 1975
In: Manuscripta mathematica
Year: 1975, Jahrgang: 16, Heft: 1, Pages: 1-9
ISSN:1432-1785
DOI:10.1007/BF01169059
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1007/BF01169059
Verlag, Volltext: https://link.springer.com/article/10.1007/BF01169059
Volltext
Verfasserangaben:Michael Leinert
Beschreibung
Zusammenfassung:Let B be an abstract Segal algebra in some Banach algebra A. There was some belief that in the commutative case A should be semi-simple, if B is, but this is not so (Section I). It is well known that a (proper) abstract Segal algebra does not have bounded right approximate units. It may however have a left unit. Pseudosymmetric Segal algebras in the sense of Reiter do not have bounded left approximate units (Section II). A nonfactorization proof is given for a class of algebras which contains most of the known examples of Segal algebras on abelian groups (Section III).
Beschreibung:Gesehen am 04.06.2018
Beschreibung:Online Resource
ISSN:1432-1785
DOI:10.1007/BF01169059