Remarks on Segal algebras

Let B be an abstract Segal algebra in some Banach algebra A. There was some belief that in the commutative case A should be semi-simple, if B is, but this is not so (Section I). It is well known that a (proper) abstract Segal algebra does not have bounded right approximate units. It may however have...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Leinert, Michael (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 1975
In: Manuscripta mathematica
Year: 1975, Jahrgang: 16, Heft: 1, Pages: 1-9
ISSN:1432-1785
DOI:10.1007/BF01169059
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1007/BF01169059
Verlag, Volltext: https://link.springer.com/article/10.1007/BF01169059
Volltext
Verfasserangaben:Michael Leinert

MARC

LEADER 00000caa a2200000 c 4500
001 1575954133
003 DE-627
005 20220814152842.0
007 cr uuu---uuuuu
008 180604s1975 xx |||||o 00| ||eng c
024 7 |a 10.1007/BF01169059  |2 doi 
035 |a (DE-627)1575954133 
035 |a (DE-576)505954133 
035 |a (DE-599)BSZ505954133 
035 |a (OCoLC)1341010424 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Leinert, Michael  |e VerfasserIn  |0 (DE-588)1065488696  |0 (DE-627)816189153  |0 (DE-576)425236153  |4 aut 
245 1 0 |a Remarks on Segal algebras  |c Michael Leinert 
264 1 |c 1975 
300 |a 9 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 04.06.2018 
520 |a Let B be an abstract Segal algebra in some Banach algebra A. There was some belief that in the commutative case A should be semi-simple, if B is, but this is not so (Section I). It is well known that a (proper) abstract Segal algebra does not have bounded right approximate units. It may however have a left unit. Pseudosymmetric Segal algebras in the sense of Reiter do not have bounded left approximate units (Section II). A nonfactorization proof is given for a class of algebras which contains most of the known examples of Segal algebras on abelian groups (Section III). 
773 0 8 |i Enthalten in  |t Manuscripta mathematica  |d Berlin : Springer, 1969  |g 16(1975), 1, Seite 1-9  |h Online-Ressource  |w (DE-627)253770637  |w (DE-600)1459409-2  |w (DE-576)072578661  |x 1432-1785  |7 nnas  |a Remarks on Segal algebras 
773 1 8 |g volume:16  |g year:1975  |g number:1  |g pages:1-9  |g extent:9  |a Remarks on Segal algebras 
856 4 0 |u http://dx.doi.org/10.1007/BF01169059  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u https://link.springer.com/article/10.1007/BF01169059  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20180604 
993 |a Article 
994 |a 1975 
998 |g 1065488696  |a Leinert, Michael  |m 1065488696:Leinert, Michael  |p 1  |x j  |y j 
999 |a KXP-PPN1575954133  |e 3011459711 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"origin":[{"publisher":"Springer","dateIssuedKey":"1969","dateIssuedDisp":"1969-","publisherPlace":"Berlin ; Heidelberg"}],"id":{"issn":["1432-1785"],"zdb":["1459409-2"],"eki":["253770637"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"Manuscripta mathematica","title_sort":"Manuscripta mathematica"}],"pubHistory":["1.1969 -"],"part":{"extent":"9","text":"16(1975), 1, Seite 1-9","volume":"16","issue":"1","pages":"1-9","year":"1975"},"note":["Gesehen am 01.12.05"],"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Remarks on Segal algebrasManuscripta mathematica","language":["eng"],"recId":"253770637"}],"physDesc":[{"extent":"9 S."}],"id":{"eki":["1575954133"],"doi":["10.1007/BF01169059"]},"origin":[{"dateIssuedDisp":"1975","dateIssuedKey":"1975"}],"name":{"displayForm":["Michael Leinert"]},"recId":"1575954133","language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 04.06.2018"],"title":[{"title":"Remarks on Segal algebras","title_sort":"Remarks on Segal algebras"}],"person":[{"given":"Michael","family":"Leinert","role":"aut","roleDisplay":"VerfasserIn","display":"Leinert, Michael"}]} 
SRT |a LEINERTMICREMARKSONS1975