Weak* fixed point property and asymptotic centre for the Fourier-Stieltjes algebra of a locally compact group

In this paper we show that the Fourier-Stieltjes algebra B(G) of a non-compact locally compact group G cannot have the weak* fixed point property for nonexpansive mappings. This answers two open problems posed at a conference in Marseille-Luminy in 1989. We also show that a locally compact group is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fendler, Gero (VerfasserIn) , Lau, Anthony To-Ming (VerfasserIn) , Leinert, Michael (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 1 January 2013
In: Journal of functional analysis
Year: 2012, Jahrgang: 264, Heft: 1, Pages: 288-302
ISSN:1096-0783
DOI:10.1016/j.jfa.2012.10.011
Online-Zugang:Verlag, kostenfrei, Volltext: http://dx.doi.org/10.1016/j.jfa.2012.10.011
Verlag, kostenfrei, Volltext: http://www.sciencedirect.com/science/article/pii/S0022123612003862
Volltext
Verfasserangaben:Gero Fendler, Anthony To-Ming Lau, Michael Leinert
Beschreibung
Zusammenfassung:In this paper we show that the Fourier-Stieltjes algebra B(G) of a non-compact locally compact group G cannot have the weak* fixed point property for nonexpansive mappings. This answers two open problems posed at a conference in Marseille-Luminy in 1989. We also show that a locally compact group is compact exactly if the asymptotic centre of any non-empty weak* closed bounded convex subset C in B(G) with respect to a decreasing net of bounded subsets is a non-empty norm compact subset. In particular, when G is compact, B(G) has the weak* fixed point property for left reversible semigroups. This generalizes a classical result of T.C. Lim for the circle group. As a consequence of our main results we obtain that a number of properties, some of which were known to hold for compact groups, in fact characterize compact groups.
Beschreibung:Available online 7 November 2012
Gesehen am 06.06.2018
Beschreibung:Online Resource
ISSN:1096-0783
DOI:10.1016/j.jfa.2012.10.011