Fell-Bündel und verallgemeinerte L1-algebren

The relation between cross-sectional algebras of homogeneous Banach-∗-algebraic bundles in the sense of Fell [5] and generalized L1-algebras, as defined in slightly different ways by Leptin [7], Busby and Smith [2], and others, has been studied by Busby in [3]. We give an extension of his result, us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Leinert, Michael (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Deutsch
Veröffentlicht: 29 June 2004
In: Journal of functional analysis
Year: 1976, Jahrgang: 22, Heft: 4, Pages: 323-345
ISSN:1096-0783
DOI:10.1016/0022-1236(76)90001-X
Online-Zugang:Verlag, kostenfrei, Volltext: http://dx.doi.org/10.1016/0022-1236(76)90001-X
Verlag, kostenfrei, Volltext: http://www.sciencedirect.com/science/article/pii/002212367690001X
Volltext
Verfasserangaben:Michael Leinert
Beschreibung
Zusammenfassung:The relation between cross-sectional algebras of homogeneous Banach-∗-algebraic bundles in the sense of Fell [5] and generalized L1-algebras, as defined in slightly different ways by Leptin [7], Busby and Smith [2], and others, has been studied by Busby in [3]. We give an extension of his result, using a different method for obtaining topological group extensions. Instead of first constructing the abstract group extension from the given factor system and then topologizing it, we work in a natural topological setting and define a topological group which turns out to be the group extension belonging to the given factor system. As a consequence we obtain (without separability assumptions) that for any measurable factor system of a locally compact group with values in some other locally compact group the corresponding abstract group extension can be topologized to give a topological (and hence locally compact) group extension.
Beschreibung:Available online 29 June 2004
Im Titel ist die 1 hochgestellt
Gesehen am 08.06.2018
Beschreibung:Online Resource
ISSN:1096-0783
DOI:10.1016/0022-1236(76)90001-X