A Martingale approach to the law of large numbers for weakly interacting stochastic processes

It is shown that certain measure-valued stochastic processes describing the time evolution of systems of weakly interacting particles converge in the limit, when the particle number goes to infinity, to a deterministic nonlinear process.

Saved in:
Bibliographic Details
Main Author: Oelschläger, Karl (Author)
Format: Article (Journal)
Language:English
Published: 19 April 2007
In: The annals of probability
Year: 1984, Volume: 12, Issue: 2, Pages: 458-479
ISSN:2168-894X
DOI:10.1214/aop/1176993301
Online Access:Verlag, Volltext: http://dx.doi.org/10.1214/aop/1176993301
Verlag, Volltext: http://projecteuclid.org/euclid.aop/1176993301
Get full text
Author Notes:by Karl Oelschläger
Description
Summary:It is shown that certain measure-valued stochastic processes describing the time evolution of systems of weakly interacting particles converge in the limit, when the particle number goes to infinity, to a deterministic nonlinear process.
Item Description:First available in Project Euclid: 19 April 2007
Gesehen am 08.06.2018
Physical Description:Online Resource
ISSN:2168-894X
DOI:10.1214/aop/1176993301