A Martingale approach to the law of large numbers for weakly interacting stochastic processes

It is shown that certain measure-valued stochastic processes describing the time evolution of systems of weakly interacting particles converge in the limit, when the particle number goes to infinity, to a deterministic nonlinear process.

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Oelschläger, Karl (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 19 April 2007
In: The annals of probability
Year: 1984, Jahrgang: 12, Heft: 2, Pages: 458-479
ISSN:2168-894X
DOI:10.1214/aop/1176993301
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1214/aop/1176993301
Verlag, Volltext: http://projecteuclid.org/euclid.aop/1176993301
Volltext
Verfasserangaben:by Karl Oelschläger
Beschreibung
Zusammenfassung:It is shown that certain measure-valued stochastic processes describing the time evolution of systems of weakly interacting particles converge in the limit, when the particle number goes to infinity, to a deterministic nonlinear process.
Beschreibung:First available in Project Euclid: 19 April 2007
Gesehen am 08.06.2018
Beschreibung:Online Resource
ISSN:2168-894X
DOI:10.1214/aop/1176993301