On the connection between Hamiltonian many-particle systems and the hydrodynamical equations

We consider certain Hamiltonian systems with many particles interacting through a potential whose range is large in comparison with the typical distance between neighbouring particles. It is shown that the empirical processes of the positions and the velocities respectively converge to solutions of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Oelschläger, Karl (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: December 1991
In: Archive for rational mechanics and analysis
Year: 1991, Jahrgang: 115, Heft: 4, Pages: 297-310
ISSN:1432-0673
DOI:10.1007/BF00375277
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1007/BF00375277
Verlag, Volltext: https://link.springer.com/article/10.1007/BF00375277
Volltext
Verfasserangaben:Karl Oelschläger
Beschreibung
Zusammenfassung:We consider certain Hamiltonian systems with many particles interacting through a potential whose range is large in comparison with the typical distance between neighbouring particles. It is shown that the empirical processes of the positions and the velocities respectively converge to solutions of the continuity equation and the Euler equation, in the limit as the particle number tends to infinity.
Beschreibung:Gesehen am 08.06.2018
Beschreibung:Online Resource
ISSN:1432-0673
DOI:10.1007/BF00375277