Log canonical thresholds of quasi-ordinary hypersurface singularities

The log canonical thresholds of irreducible quasi-ordinary hypersurface singularities are computed using an explicit list of pole candidates for the motivic zeta function found by the last two authors.

Saved in:
Bibliographic Details
Main Authors: Budur, Nero (Author) , González Pérez, Pedro Daniel (Author) , González Villa, Manuel (Author)
Format: Article (Journal)
Language:English
Published: April 6, 2012
In: Proceedings of the American Mathematical Society
Year: 2012, Volume: 140, Issue: 12, Pages: 4075-4083
ISSN:1088-6826
DOI:10.1090/S0002-9939-2012-11416-9
Online Access:Resolving-System, Volltext: http://dx.doi.org/10.1090/S0002-9939-2012-11416-9
Verlag, Volltext: http://www.ams.org/journals/proc/2012-140-12/S0002-9939-2012-11416-9/home.html
Get full text
Author Notes:Nero Budur, Pedro González-Pérez, and Manuel González Villa
Description
Summary:The log canonical thresholds of irreducible quasi-ordinary hypersurface singularities are computed using an explicit list of pole candidates for the motivic zeta function found by the last two authors.
Item Description:Gesehen am 13.07.2018
Physical Description:Online Resource
ISSN:1088-6826
DOI:10.1090/S0002-9939-2012-11416-9