Log canonical thresholds of quasi-ordinary hypersurface singularities
The log canonical thresholds of irreducible quasi-ordinary hypersurface singularities are computed using an explicit list of pole candidates for the motivic zeta function found by the last two authors.
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
April 6, 2012
|
| In: |
Proceedings of the American Mathematical Society
Year: 2012, Volume: 140, Issue: 12, Pages: 4075-4083 |
| ISSN: | 1088-6826 |
| DOI: | 10.1090/S0002-9939-2012-11416-9 |
| Online Access: | Resolving-System, Volltext: http://dx.doi.org/10.1090/S0002-9939-2012-11416-9 Verlag, Volltext: http://www.ams.org/journals/proc/2012-140-12/S0002-9939-2012-11416-9/home.html |
| Author Notes: | Nero Budur, Pedro González-Pérez, and Manuel González Villa |
| Summary: | The log canonical thresholds of irreducible quasi-ordinary hypersurface singularities are computed using an explicit list of pole candidates for the motivic zeta function found by the last two authors. |
|---|---|
| Item Description: | Gesehen am 13.07.2018 |
| Physical Description: | Online Resource |
| ISSN: | 1088-6826 |
| DOI: | 10.1090/S0002-9939-2012-11416-9 |