Nonparametric estimation in functional linear model

We consider the problem of estimating the slope parameter in functional linear regression, where scalar responses Y 1 yYn nare modeled in dependence of random functions X 1 X n. In the case of second order stationary random functions and as well in the non stationary case estimators of the functiona...

Full description

Saved in:
Bibliographic Details
Main Author: Johannes, Jan (Author)
Format: Chapter/Article
Language:English
Published: 2008
In: Functional and operatorial statistics
Year: 2008, Pages: 215-221
DOI:10.1007/978-3-7908-2062-1_33
Online Access:Resolving-System, Volltext: http://dx.doi.org/10.1007/978-3-7908-2062-1_33
Verlag, Volltext: https://link.springer.com/chapter/10.1007/978-3-7908-2062-1_33
Get full text
Author Notes:Jan Johannes
Description
Summary:We consider the problem of estimating the slope parameter in functional linear regression, where scalar responses Y 1 yYn nare modeled in dependence of random functions X 1 X n. In the case of second order stationary random functions and as well in the non stationary case estimators of the functional slope parameter and its derivatives are constructed based on a regularized inversion of the estimated covariance operator. In this paper the rate of convergence of the estimator is derived assuming that the slope parameter belongs to the well-known Sobolev space of periodic functions and that the covariance operator is finitely, infinitely or in some general form smoothing.
Item Description:Gesehen am 19.07.2018
Physical Description:Online Resource
ISBN:9783790820621
DOI:10.1007/978-3-7908-2062-1_33