Nonparametric estimation in functional linear model
We consider the problem of estimating the slope parameter in functional linear regression, where scalar responses Y 1 yYn nare modeled in dependence of random functions X 1 X n. In the case of second order stationary random functions and as well in the non stationary case estimators of the functiona...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Kapitel/Artikel |
| Sprache: | Englisch |
| Veröffentlicht: |
2008
|
| In: |
Functional and operatorial statistics
Year: 2008, Pages: 215-221 |
| DOI: | 10.1007/978-3-7908-2062-1_33 |
| Online-Zugang: | Resolving-System, Volltext: http://dx.doi.org/10.1007/978-3-7908-2062-1_33 Verlag, Volltext: https://link.springer.com/chapter/10.1007/978-3-7908-2062-1_33 |
| Verfasserangaben: | Jan Johannes |
MARC
| LEADER | 00000caa a22000002c 4500 | ||
|---|---|---|---|
| 001 | 1577778057 | ||
| 003 | DE-627 | ||
| 005 | 20220814194815.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 180719s2008 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1007/978-3-7908-2062-1_33 |2 doi | |
| 035 | |a (DE-627)1577778057 | ||
| 035 | |a (DE-576)507778057 | ||
| 035 | |a (DE-599)BSZ507778057 | ||
| 035 | |a (OCoLC)1341014104 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Johannes, Jan |d 1973- |e VerfasserIn |0 (DE-588)124429386 |0 (DE-627)363341331 |0 (DE-576)187013535 |4 aut | |
| 245 | 1 | 0 | |a Nonparametric estimation in functional linear model |c Jan Johannes |
| 264 | 1 | |c 2008 | |
| 300 | |a 7 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 19.07.2018 | ||
| 520 | |a We consider the problem of estimating the slope parameter in functional linear regression, where scalar responses Y 1 yYn nare modeled in dependence of random functions X 1 X n. In the case of second order stationary random functions and as well in the non stationary case estimators of the functional slope parameter and its derivatives are constructed based on a regularized inversion of the estimated covariance operator. In this paper the rate of convergence of the estimator is derived assuming that the slope parameter belongs to the well-known Sobolev space of periodic functions and that the covariance operator is finitely, infinitely or in some general form smoothing. | ||
| 773 | 0 | 8 | |i Enthalten in |t Functional and operatorial statistics |d Heidelberg : Physica-Verlag Heidelberg, 2008 |g (2008), Seite 215-221 |h Online-Ressource (digital) |w (DE-627)1647090083 |w (DE-576)283375248 |z 9783790820621 |7 nnam |a Nonparametric estimation in functional linear model |
| 773 | 1 | 8 | |g year:2008 |g pages:215-221 |g extent:7 |a Nonparametric estimation in functional linear model |
| 856 | 4 | 0 | |u http://dx.doi.org/10.1007/978-3-7908-2062-1_33 |x Resolving-System |x Verlag |3 Volltext |
| 856 | 4 | 0 | |u https://link.springer.com/chapter/10.1007/978-3-7908-2062-1_33 |x Verlag |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20180719 | ||
| 993 | |a BookComponentPart | ||
| 994 | |a 2008 | ||
| 998 | |g 124429386 |a Johannes, Jan |m 124429386:Johannes, Jan |d 110000 |d 110200 |d 110000 |d 110400 |e 110000PJ124429386 |e 110200PJ124429386 |e 110000PJ124429386 |e 110400PJ124429386 |k 0/110000/ |k 1/110000/110200/ |k 0/110000/ |k 1/110000/110400/ |p 1 |x j |y j | ||
| 999 | |a KXP-PPN1577778057 |e 3018354575 | ||
| BIB | |a Y | ||
| JSO | |a {"person":[{"role":"aut","display":"Johannes, Jan","given":"Jan","family":"Johannes"}],"language":["eng"],"relHost":[{"name":{"displayForm":["by Sophie Dabo-Niang, Frédéric Ferraty (ed,)"]},"note":["\"The First International Workshop on Functional and Operatorial Statistics (IWFOS)\"--Pref","Includes bibliographical references"],"disp":"Nonparametric estimation in functional linear modelFunctional and operatorial statistics","person":[{"display":"Dabo-Niang, Sophie","role":"edt","family":"Dabo-Niang","given":"Sophie"},{"display":"Ferraty, Frédéric","role":"edt","family":"Ferraty","given":"Frédéric"}],"language":["eng"],"physDesc":[{"extent":"Online-Ressource (digital)"}],"title":[{"title_sort":"Functional and operatorial statistics","title":"Functional and operatorial statistics"}],"recId":"1647090083","origin":[{"dateIssuedDisp":"2008","publisher":"Physica-Verlag Heidelberg","publisherPlace":"Heidelberg","dateIssuedKey":"2008"}],"id":{"eki":["1647090083"],"doi":["10.1007/978-3-7908-2062-1"],"isbn":["9783790820621"]},"type":{"media":"Online-Ressource","bibl":"edited-book"},"part":{"year":"2008","extent":"7","pages":"215-221","text":"(2008), Seite 215-221"}}],"title":[{"title":"Nonparametric estimation in functional linear model","title_sort":"Nonparametric estimation in functional linear model"}],"id":{"doi":["10.1007/978-3-7908-2062-1_33"],"eki":["1577778057"]},"type":{"bibl":"chapter","media":"Online-Ressource"},"physDesc":[{"extent":"7 S."}],"note":["Gesehen am 19.07.2018"],"name":{"displayForm":["Jan Johannes"]},"recId":"1577778057","origin":[{"dateIssuedDisp":"2008","dateIssuedKey":"2008"}]} | ||
| SRT | |a JOHANNESJANONPARAMET2008 | ||