Scale limit of a variational inequality modeling diffusive flux in a domain with small holes and strong adsorption in case of a critical scaling

In this paper we study the asymptotic behavior of solutions u ɛ of the elliptic variational inequality for the Laplace operator in domains periodically perforated by balls with radius of size C 0ɛα, C 0 > 0, α = n/n−2, and distributed with period ɛ. On the boundary of balls, we have the following...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jäger, Willi (VerfasserIn) , Neuss-Radu, Maria (VerfasserIn) , Shaposhnikova, Tat'yana Ardolionovna (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 15 May 2011
In: Doklady mathematics
Year: 2011, Jahrgang: 83, Heft: 2, Pages: 204-208
ISSN:1531-8362
DOI:10.1134/S1064562411020219
Online-Zugang:Resolving-System, Volltext: http://dx.doi.org/10.1134/S1064562411020219
Verlag, Volltext: https://link.springer.com/article/10.1134/S1064562411020219
Volltext
Verfasserangaben:W. Jäger, M. Neuss-Radu, and T.A. Shaposhnikova
Beschreibung
Zusammenfassung:In this paper we study the asymptotic behavior of solutions u ɛ of the elliptic variational inequality for the Laplace operator in domains periodically perforated by balls with radius of size C 0ɛα, C 0 > 0, α = n/n−2, and distributed with period ɛ. On the boundary of balls, we have the following nonlinear restrictions u ɛ ≥ 0, ∂ν u ɛ ≥ −ɛ−ασ(x, u ɛ), u ɛ(∂ν u ɛ + ɛ−ασ(x, u ɛ)) = 0. The weak convergence of the solutions u ɛ to the solution of an effective variational equality is proved. In this case, the effective equation contains a nonlinear term which has to be determined as solution of a functional equation. Furthermore, a corrector result with respect to the energy norm is given.
Beschreibung:Gesehen am 02.08.2018
Beschreibung:Online Resource
ISSN:1531-8362
DOI:10.1134/S1064562411020219