Delocalization of ultracold atoms in a disordered potential due to light scattering

We numerically study the expansion dynamics of ultracold atoms in a one-dimensional disordered potential in the presence of a weak position measurement of the atoms. We specifically consider this position measurement to be realized by a combination of an external laser and a periodic array of optica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Nowak, Boris (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 9 October 2012
In: Physical review. A, Atomic, molecular, and optical physics
Year: 2012, Jahrgang: 86, Heft: 4
ISSN:1094-1622
DOI:10.1103/PhysRevA.86.043610
Online-Zugang:Resolving-System, Volltext: http://dx.doi.org/10.1103/PhysRevA.86.043610
Verlag, Volltext: https://link.aps.org/doi/10.1103/PhysRevA.86.043610
Volltext
Verfasserangaben:Boris Nowak, Jami J. Kinnunen, Murray J. Holland, and Peter Schlagheck
Beschreibung
Zusammenfassung:We numerically study the expansion dynamics of ultracold atoms in a one-dimensional disordered potential in the presence of a weak position measurement of the atoms. We specifically consider this position measurement to be realized by a combination of an external laser and a periodic array of optical microcavities along a waveguide. The position information is acquired through the scattering of a near-resonant laser photon into a specific eigenmode of one of the cavities. The time evolution of the atomic density in the presence of this light-scattering mechanism is described within a Lindblad master equation approach, which is numerically implemented using the Monte Carlo wave function technique. We find that an arbitrarily weak rate of photon emission leads to a breakdown of Anderson localization of the atoms.
Beschreibung:Gesehen am 03.08.2018
Beschreibung:Online Resource
ISSN:1094-1622
DOI:10.1103/PhysRevA.86.043610