On conditions for asymptotic stability of dissipative infinite-dimensional systems with intermittent damping
We study the asymptotic stability of a dissipative evolution in a Hilbert space subject to intermittent damping. We observe that, even if the intermittence satisfies a persistent excitation condition, if the Hilbert space is infinite-dimensional then the system needs not being asymptotically stable (n...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
16 February 2012
|
| In: |
Journal of differential equations
Year: 2012, Jahrgang: 252, Heft: 10, Pages: 5569-5593 |
| ISSN: | 1090-2732 |
| DOI: | 10.1016/j.jde.2012.01.037 |
| Online-Zugang: | Verlag, Volltext: http://dx.doi.org/10.1016/j.jde.2012.01.037 Verlag, Volltext: http://linkinghub.elsevier.com/retrieve/pii/S0022039612000617 |
| Verfasserangaben: | Falk M. Hante, Mario Sigalotti, Marius Tucsnak |
| Zusammenfassung: | We study the asymptotic stability of a dissipative evolution in a Hilbert space subject to intermittent damping. We observe that, even if the intermittence satisfies a persistent excitation condition, if the Hilbert space is infinite-dimensional then the system needs not being asymptotically stable (not even in the weak sense). Exponential stability is recovered under a generalized observability inequality, allowing for time-domains that are not intervals. Weak asymptotic stability is obtained under a similarly generalized unique continuation principle. Finally, strong asymptotic stability is proved for intermittences that do not necessarily satisfy some persistent excitation condition, evaluating their total contribution to the decay of the trajectories of the damped system. Our results are discussed using the example of the wave equation, Schrödinger’s equation and, for strong stability, also the special case of finite-dimensional systems. |
|---|---|
| Beschreibung: | Available online16 February 2012 Gesehen am 06.08.2018 |
| Beschreibung: | Online Resource |
| ISSN: | 1090-2732 |
| DOI: | 10.1016/j.jde.2012.01.037 |